BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 15356002)

  • 1. Structural, thermodynamic, and kinetic analyses of tetrahydrooxazine-derived inhibitors bound to beta-glucosidases.
    Gloster TM; Macdonald JM; Tarling CA; Stick RV; Withers SG; Davies GJ
    J Biol Chem; 2004 Nov; 279(47):49236-42. PubMed ID: 15356002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iminosugar glycosidase inhibitors: structural and thermodynamic dissection of the binding of isofagomine and 1-deoxynojirimycin to beta-glucosidases.
    Zechel DL; Boraston AB; Gloster T; Boraston CM; Macdonald JM; Tilbrook DM; Stick RV; Davies GJ
    J Am Chem Soc; 2003 Nov; 125(47):14313-23. PubMed ID: 14624580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycosidase inhibition: an assessment of the binding of 18 putative transition-state mimics.
    Gloster TM; Meloncelli P; Stick RV; Zechel D; Vasella A; Davies GJ
    J Am Chem Soc; 2007 Feb; 129(8):2345-54. PubMed ID: 17279749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct observation of the protonation state of an imino sugar glycosidase inhibitor upon binding.
    Varrot A; Tarling CA; Macdonald JM; Stick RV; Zechel DL; Withers SG; Davies GJ
    J Am Chem Soc; 2003 Jun; 125(25):7496-7. PubMed ID: 12812472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiochemical and Thermodynamic Characterization of Highly Active Mutated Aspergillus niger β-glucosidase for Lignocellulose Hydrolysis.
    Javed MR; Rashid MH; Riaz M; Nadeem H; Qasim M; Ashiq N
    Protein Pept Lett; 2018; 25(2):208-219. PubMed ID: 29384047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural, kinetic, and thermodynamic analysis of glucoimidazole-derived glycosidase inhibitors.
    Gloster TM; Roberts S; Perugino G; Rossi M; Moracci M; Panday N; Terinek M; Vasella A; Davies GJ
    Biochemistry; 2006 Oct; 45(39):11879-84. PubMed ID: 17002288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational flexibility of mammalian cytochrome P450 2B4 in binding imidazole inhibitors with different ring chemistry and side chains. Solution thermodynamics and molecular modeling.
    Muralidhara BK; Negi S; Chin CC; Braun W; Halpert JR
    J Biol Chem; 2006 Mar; 281(12):8051-61. PubMed ID: 16439365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic studies on the aminopeptidase from Aeromonas proteolytica: a two-metal ion mechanism for peptide hydrolysis.
    Chen G; Edwards T; D'souza VM; Holz RC
    Biochemistry; 1997 Apr; 36(14):4278-86. PubMed ID: 9100023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic analysis of the binding of glutathione to glutathione S-transferase over a range of temperatures.
    Ortiz-Salmerón E; Yassin Z; Clemente-Jimenez MJ; Las Heras-Vazquez FJ; Rodriguez-Vico F; Barón C; García-Fuentes L
    Eur J Biochem; 2001 Aug; 268(15):4307-14. PubMed ID: 11488926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions of the products, 8-oxo-dGMP, dGMP, and pyrophosphate with the MutT nucleoside triphosphate pyrophosphohydrolase.
    Saraswat V; Massiah MA; Lopez G; Amzel LM; Mildvan AS
    Biochemistry; 2002 Dec; 41(52):15566-77. PubMed ID: 12501185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic and structural basis for transition-state stabilization in antibody-catalyzed hydrolysis.
    Oda M; Ito N; Tsumuraya T; Suzuki K; Sakakura M; Fujii I
    J Mol Biol; 2007 May; 369(1):198-209. PubMed ID: 17428500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic mapping of the inhibitor site of the aspartic protease endothiapepsin.
    Gómez J; Freire E
    J Mol Biol; 1995 Sep; 252(3):337-50. PubMed ID: 7563055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and energetics of protein-protein interactions: the role of conformational heterogeneity in OMTKY3 binding to serine proteases.
    Horn JR; Ramaswamy S; Murphy KP
    J Mol Biol; 2003 Aug; 331(2):497-508. PubMed ID: 12888355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic Signatures of Substrate Binding for Three Thermobifida fusca Cellulases with Different Modes of Action.
    Hamre AG; Kaupang A; Payne CM; Väljamäe P; Sørlie M
    Biochemistry; 2019 Mar; 58(12):1648-1659. PubMed ID: 30785271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oligomeric state and structural stability of two hyperthermophilic β-glucosidases from Thermotoga petrophila.
    Colussi F; da Silva VM; Miller I; Cota J; de Oliveira LC; de Oliveira Neto M; Squina FM; Garcia W
    Amino Acids; 2015 May; 47(5):937-48. PubMed ID: 25637167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The crystallization and structural analysis of cellulases (and other glycoside hydrolases): strategies and tactics.
    Roberts SM; Davies GJ
    Methods Enzymol; 2012; 510():141-68. PubMed ID: 22608725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Think twice: understanding the high potency of bis(phenyl)methane inhibitors of thrombin.
    Baum B; Muley L; Heine A; Smolinski M; Hangauer D; Klebe G
    J Mol Biol; 2009 Aug; 391(3):552-64. PubMed ID: 19520086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic basis for the increased thermostability of CheY from the hyperthermophile Thermotoga maritima.
    Deutschman WA; Dahlquist FW
    Biochemistry; 2001 Oct; 40(43):13107-13. PubMed ID: 11669649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of beta-glucosidase by imidazoles.
    Li YK; Byers LD
    Biochim Biophys Acta; 1989 Dec; 999(3):227-32. PubMed ID: 2532549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure and substrate-binding mode of cellulase 12A from Thermotoga maritima.
    Cheng YS; Ko TP; Wu TH; Ma Y; Huang CH; Lai HL; Wang AH; Liu JR; Guo RT
    Proteins; 2011 Apr; 79(4):1193-204. PubMed ID: 21268113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.