BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 15356113)

  • 1. Nitric oxide-dependent mitochondrial biogenesis generates Ca2+ signaling profile of lupus T cells.
    Nagy G; Barcza M; Gonchoroff N; Phillips PE; Perl A
    J Immunol; 2004 Sep; 173(6):3676-83. PubMed ID: 15356113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. T cell activation-induced mitochondrial hyperpolarization is mediated by Ca2+- and redox-dependent production of nitric oxide.
    Nagy G; Koncz A; Perl A
    J Immunol; 2003 Nov; 171(10):5188-97. PubMed ID: 14607919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic control of T cell activation and death in SLE.
    Fernandez D; Perl A
    Autoimmun Rev; 2009 Jan; 8(3):184-9. PubMed ID: 18722557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Persistent mitochondrial hyperpolarization, increased reactive oxygen intermediate production, and cytoplasmic alkalinization characterize altered IL-10 signaling in patients with systemic lupus erythematosus.
    Gergely P; Niland B; Gonchoroff N; Pullmann R; Phillips PE; Perl A
    J Immunol; 2002 Jul; 169(2):1092-101. PubMed ID: 12097418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Signal transduction abnormalities in systemic lupus erythematosus].
    Nagy G; Géher P; Koncz A; Perl A
    Orv Hetil; 2005 Jul; 146(31):1625-30. PubMed ID: 16158611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of mitochondrial dysfunction in lymphocytes of patients with systemic lupus erythematosus.
    Perl A; Hanczko R; Doherty E
    Methods Mol Biol; 2012; 900():61-89. PubMed ID: 22933065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of nitric oxide in abnormal T cell signal transduction in systemic lupus erythematosus.
    Nagy G; Perl A
    Clin Immunol; 2006; 118(2-3):145-51. PubMed ID: 16406340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial hyperpolarization and ATP depletion in patients with systemic lupus erythematosus.
    Gergely P; Grossman C; Niland B; Puskas F; Neupane H; Allam F; Banki K; Phillips PE; Perl A
    Arthritis Rheum; 2002 Jan; 46(1):175-90. PubMed ID: 11817589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of mammalian target of rapamycin controls the loss of TCRzeta in lupus T cells through HRES-1/Rab4-regulated lysosomal degradation.
    Fernandez DR; Telarico T; Bonilla E; Li Q; Banerjee S; Middleton FA; Phillips PE; Crow MK; Oess S; Muller-Esterl W; Perl A
    J Immunol; 2009 Feb; 182(4):2063-73. PubMed ID: 19201859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapamycin reduces disease activity and normalizes T cell activation-induced calcium fluxing in patients with systemic lupus erythematosus.
    Fernandez D; Bonilla E; Mirza N; Niland B; Perl A
    Arthritis Rheum; 2006 Sep; 54(9):2983-8. PubMed ID: 16947529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric oxide, mitochondrial hyperpolarization, and T cell activation.
    Nagy G; Koncz A; Fernandez D; Perl A
    Free Radic Biol Med; 2007 Jun; 42(11):1625-31. PubMed ID: 17462531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. T-cell and B-cell signaling biomarkers and treatment targets in lupus.
    Perl A; Fernandez DR; Telarico T; Doherty E; Francis L; Phillips PE
    Curr Opin Rheumatol; 2009 Sep; 21(5):454-64. PubMed ID: 19550330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signaling abnormalities in systemic lupus erythematosus as potential drug targets.
    Fernandez D; Bonilla E; Phillips P; Perl A
    Endocr Metab Immune Disord Drug Targets; 2006 Dec; 6(4):305-11. PubMed ID: 17214576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apoptosis and mitochondrial dysfunction in lymphocytes of patients with systemic lupus erythematosus.
    Perl A; Nagy G; Gergely P; Puskas F; Qian Y; Banki K
    Methods Mol Med; 2004; 102():87-114. PubMed ID: 15286382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered dynamics of Kv1.3 channel compartmentalization in the immunological synapse in systemic lupus erythematosus.
    Nicolaou SA; Szigligeti P; Neumeier L; Lee SM; Duncan HJ; Kant SK; Mongey AB; Filipovich AH; Conforti L
    J Immunol; 2007 Jul; 179(1):346-56. PubMed ID: 17579055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial dysfunction in T cells of patients with systemic lupus erythematosus.
    Perl A; Gergely P; Banki K
    Int Rev Immunol; 2004; 23(3-4):293-313. PubMed ID: 15204090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TCR/CD3 complex-mediated signal transduction pathway in T cells and T cell lines from patients with systemic lupus erythematosus.
    Vassilopoulos D; Kovacs B; Tsokos GC
    J Immunol; 1995 Aug; 155(4):2269-81. PubMed ID: 7636273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential calcium signaling and Kv1.3 trafficking to the immunological synapse in systemic lupus erythematosus.
    Nicolaou SA; Neumeier L; Takimoto K; Lee SM; Duncan HJ; Kant SK; Mongey AB; Filipovich AH; Conforti L
    Cell Calcium; 2010 Jan; 47(1):19-28. PubMed ID: 19959227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The apoptotic ligands TRAIL, TWEAK, and Fas ligand mediate monocyte death induced by autologous lupus T cells.
    Kaplan MJ; Lewis EE; Shelden EA; Somers E; Pavlic R; McCune WJ; Richardson BC
    J Immunol; 2002 Nov; 169(10):6020-9. PubMed ID: 12421989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased expression of SLAM receptors SLAMF3 and SLAMF6 in systemic lupus erythematosus T lymphocytes promotes Th17 differentiation.
    Chatterjee M; Rauen T; Kis-Toth K; Kyttaris VC; Hedrich CM; Terhorst C; Tsokos GC
    J Immunol; 2012 Feb; 188(3):1206-12. PubMed ID: 22184727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.