BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

845 related articles for article (PubMed ID: 15356189)

  • 1. Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species.
    Starkov AA; Fiskum G; Chinopoulos C; Lorenzo BJ; Browne SE; Patel MS; Beal MF
    J Neurosci; 2004 Sep; 24(36):7779-88. PubMed ID: 15356189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of alpha-glycerophosphate-evoked H2O2 generation in brain mitochondria.
    Tretter L; Takacs K; Hegedus V; Adam-Vizi V
    J Neurochem; 2007 Feb; 100(3):650-63. PubMed ID: 17263793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topology of superoxide production from different sites in the mitochondrial electron transport chain.
    St-Pierre J; Buckingham JA; Roebuck SJ; Brand MD
    J Biol Chem; 2002 Nov; 277(47):44784-90. PubMed ID: 12237311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of the alpha-ketoglutarate dehydrogenase-mediated reactive oxygen species generation by lipoic acid.
    Ambrus A; Tretter L; Adam-Vizi V
    J Neurochem; 2009 May; 109 Suppl 1():222-9. PubMed ID: 19393031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I.
    Quinlan CL; Goncalves RL; Hey-Mogensen M; Yadava N; Bunik VI; Brand MD
    J Biol Chem; 2014 Mar; 289(12):8312-25. PubMed ID: 24515115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible inactivation of dihydrolipoamide dehydrogenase by mitochondrial hydrogen peroxide.
    Yan LJ; Sumien N; Thangthaeng N; Forster MJ
    Free Radic Res; 2013 Feb; 47(2):123-33. PubMed ID: 23205777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase.
    Tretter L; Adam-Vizi V
    J Neurosci; 2004 Sep; 24(36):7771-8. PubMed ID: 15356188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The production of reactive oxygen species in intact isolated nerve terminals is independent of the mitochondrial membrane potential.
    Sipos I; Tretter L; Adam-Vizi V
    Neurochem Res; 2003 Oct; 28(10):1575-81. PubMed ID: 14570403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mice deficient in dihydrolipoamide dehydrogenase show increased vulnerability to MPTP, malonate and 3-nitropropionic acid neurotoxicity.
    Klivenyi P; Starkov AA; Calingasan NY; Gardian G; Browne SE; Yang L; Bubber P; Gibson GE; Patel MS; Beal MF
    J Neurochem; 2004 Mar; 88(6):1352-60. PubMed ID: 15009635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of reactive oxygen species by mitochondria: central role of complex III.
    Chen Q; Vazquez EJ; Moghaddas S; Hoppel CL; Lesnefsky EJ
    J Biol Chem; 2003 Sep; 278(38):36027-31. PubMed ID: 12840017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of reactive oxygen species in brain mitochondria: contribution by electron transport chain and non-electron transport chain sources.
    Adam-Vizi V
    Antioxid Redox Signal; 2005; 7(9-10):1140-9. PubMed ID: 16115017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates.
    Siebels I; Dröse S
    Biochim Biophys Acta; 2013 Oct; 1827(10):1156-64. PubMed ID: 23800966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I.
    Plecitá-Hlavatá L; Jezek J; Jezek P
    Int J Biochem Cell Biol; 2009; 41(8-9):1697-707. PubMed ID: 19433311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of superoxide by the mitochondrial Complex I.
    Grivennikova VG; Vinogradov AD
    Biochim Biophys Acta; 2006; 1757(5-6):553-61. PubMed ID: 16678117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state.
    Kushnareva Y; Murphy AN; Andreyev A
    Biochem J; 2002 Dec; 368(Pt 2):545-53. PubMed ID: 12180906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro effects of nicotine on mitochondrial respiration and superoxide anion generation.
    Cormier A; Morin C; Zini R; Tillement JP; Lagrue G
    Brain Res; 2001 May; 900(1):72-9. PubMed ID: 11325348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shift in the localization of sites of hydrogen peroxide production in brain mitochondria by mitochondrial stress.
    Gyulkhandanyan AV; Pennefather PS
    J Neurochem; 2004 Jul; 90(2):405-21. PubMed ID: 15228597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of Krebs cycle enzymes by hydrogen peroxide: A key role of [alpha]-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress.
    Tretter L; Adam-Vizi V
    J Neurosci; 2000 Dec; 20(24):8972-9. PubMed ID: 11124972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased production of reactive oxygen species by rat liver mitochondria after chronic ethanol treatment.
    Kukiełka E; Dicker E; Cederbaum AI
    Arch Biochem Biophys; 1994 Mar; 309(2):377-86. PubMed ID: 8135551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of training on H(2)O(2) release by mitochondria from rat skeletal muscle.
    Venditti P; Masullo P; Di Meo S
    Arch Biochem Biophys; 1999 Dec; 372(2):315-20. PubMed ID: 10600170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.