These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 15356199)

  • 1. Loss of flight and associated neuronal rhythmicity in inositol 1,4,5-trisphosphate receptor mutants of Drosophila.
    Banerjee S; Lee J; Venkatesh K; Wu CF; Hasan G
    J Neurosci; 2004 Sep; 24(36):7869-78. PubMed ID: 15356199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ectopic expression of a Drosophila InsP(3)R channel mutant has dominant-negative effects in vivo.
    Srikanth S; Banerjee S; Hasan G
    Cell Calcium; 2006 Feb; 39(2):187-96. PubMed ID: 16325255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional properties of the Drosophila melanogaster inositol 1,4,5-trisphosphate receptor mutants.
    Srikanth S; Wang Z; Tu H; Nair S; Mathew MK; Hasan G; Bezprozvanny I
    Biophys J; 2004 Jun; 86(6):3634-46. PubMed ID: 15189860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NorpA and itpr mutants reveal roles for phospholipase C and inositol (1,4,5)- trisphosphate receptor in Drosophila melanogaster renal function.
    Pollock VP; Radford JC; Pyne S; Hasan G; Dow JA; Davies SA
    J Exp Biol; 2003 Mar; 206(Pt 5):901-11. PubMed ID: 12547945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptic activity in serotonergic neurons is required for air-puff stimulated flight in Drosophila melanogaster.
    Sadaf S; Birman S; Hasan G
    PLoS One; 2012; 7(9):e46405. PubMed ID: 23029511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compensation of inositol 1,4,5-trisphosphate receptor function by altering sarco-endoplasmic reticulum calcium ATPase activity in the Drosophila flight circuit.
    Banerjee S; Joshi R; Venkiteswaran G; Agrawal N; Srikanth S; Alam F; Hasan G
    J Neurosci; 2006 Aug; 26(32):8278-88. PubMed ID: 16899722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inositol 1,4,5-trisphosphate receptor and dSTIM function in Drosophila insulin-producing neurons regulates systemic intracellular calcium homeostasis and flight.
    Agrawal N; Venkiteswaran G; Sadaf S; Padmanabhan N; Banerjee S; Hasan G
    J Neurosci; 2010 Jan; 30(4):1301-13. PubMed ID: 20107057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flight and seizure motor patterns in Drosophila mutants: simultaneous acoustic and electrophysiological recordings of wing beats and flight muscle activity.
    Iyengar A; Wu CF
    J Neurogenet; 2014; 28(3-4):316-28. PubMed ID: 25159538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic dissection of itpr gene function reveals a vital requirement in aminergic cells of Drosophila larvae.
    Joshi R; Venkatesh K; Srinivas R; Nair S; Hasan G
    Genetics; 2004 Jan; 166(1):225-36. PubMed ID: 15020420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular Ca2+ signaling and store-operated Ca2+ entry are required in Drosophila neurons for flight.
    Venkiteswaran G; Hasan G
    Proc Natl Acad Sci U S A; 2009 Jun; 106(25):10326-31. PubMed ID: 19515818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional complementation of Drosophila itpr mutants by rat Itpr1.
    Chakraborty S; Hasan G
    J Neurogenet; 2012 Sep; 26(3-4):328-37. PubMed ID: 22817477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between the inositol 1,4,5-trisphosphate and cyclic AMP signaling pathways regulate larval molting in Drosophila.
    Venkatesh K; Siddhartha G; Joshi R; Patel S; Hasan G
    Genetics; 2001 May; 158(1):309-18. PubMed ID: 11333238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional properties of a pore mutant in the Drosophila melanogaster inositol 1,4,5-trisphosphate receptor.
    Srikanth S; Wang Z; Hasan G; Bezprozvanny I
    FEBS Lett; 2004 Sep; 575(1-3):95-8. PubMed ID: 15388340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disruption of the IP3 receptor gene of Drosophila affects larval metamorphosis and ecdysone release.
    Venkatesh K; Hasan G
    Curr Biol; 1997 Jul; 7(7):500-9. PubMed ID: 9273145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A genetic RNAi screen for IP₃/Ca²⁺ coupled GPCRs in Drosophila identifies the PdfR as a regulator of insect flight.
    Agrawal T; Sadaf S; Hasan G
    PLoS Genet; 2013; 9(10):e1003849. PubMed ID: 24098151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of flight and feeding behaviours requires presynaptic IP
    Sharma A; Hasan G
    Elife; 2020 Nov; 9():. PubMed ID: 33155978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identified Serotonin-Releasing Neurons Induce Behavioral Quiescence and Suppress Mating in Drosophila.
    Pooryasin A; Fiala A
    J Neurosci; 2015 Sep; 35(37):12792-812. PubMed ID: 26377467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutations in shaking-B prevent electrical synapse formation in the Drosophila giant fiber system.
    Phelan P; Nakagawa M; Wilkin MB; Moffat KG; O'Kane CJ; Davies JA; Bacon JP
    J Neurosci; 1996 Feb; 16(3):1101-13. PubMed ID: 8558239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maturation of a central brain flight circuit in Drosophila requires Fz2/Ca²⁺ signaling.
    Agrawal T; Hasan G
    Elife; 2015 May; 4():. PubMed ID: 25955970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homeostasis of glutamate neurotransmission is altered in Drosophila Inositol 1,4,5-trisphosphate receptor mutants.
    Nair S; Agrawal N; Hasan G
    Invert Neurosci; 2007 Sep; 7(3):137-47. PubMed ID: 17492321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.