These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 1535639)

  • 21. Formant frequencies in Estonian folk singing.
    Ross J
    J Acoust Soc Am; 1992 Jun; 91(6):3532-9. PubMed ID: 1619129
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The use of an autochromatic tuner for the measurement of vocal fundamental frequency.
    Solberg LC; Fowler LP; Walker VG
    J Commun Disord; 1991 Feb; 24(1):51-8. PubMed ID: 2050841
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A system for signal processing and data extraction from aerodynamic, acoustic, and electroglottographic signals in the study of voice production.
    Perkell JS; Holmberg EB; Hillman RE
    J Acoust Soc Am; 1991 Apr; 89(4 Pt 1):1777-81. PubMed ID: 2045586
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Formant frequency structure of the aging male and female vocal tract.
    Rastatter MP; Jacques RD
    Folia Phoniatr (Basel); 1990; 42(6):312-9. PubMed ID: 2081583
    [No Abstract]   [Full Text] [Related]  

  • 25. A quasi-glottogram signal.
    Kochanski G; Shih C
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2206-16. PubMed ID: 14587618
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using Rate of Divergence as an Objective Measure to Differentiate between Voice Signal Types Based on the Amount of Disorder in the Signal.
    Calawerts WM; Lin L; Sprott JC; Jiang JJ
    J Voice; 2017 Jan; 31(1):16-23. PubMed ID: 26920858
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formant frequency estimation of high-pitched vowels using weighted linear prediction.
    Alku P; Pohjalainen J; Vainio M; Laukkanen AM; Story BH
    J Acoust Soc Am; 2013 Aug; 134(2):1295-313. PubMed ID: 23927127
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phonetically trained models for speaker recognition.
    Rodríguez-Liñares L; Garciá-Mateo C
    J Acoust Soc Am; 2001 Jan; 109(1):385-9. PubMed ID: 11206167
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Joint modeling and maximum-likelihood estimation of pitch and linear prediction coefficient parameters.
    Burshtein D
    J Acoust Soc Am; 1992 Mar; 91(3):1531-7. PubMed ID: 1532969
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of speaking rate on the perception of vowels.
    Gottfried TL; Miller JL; Payton PE
    Phonetica; 1990; 47(3-4):155-72. PubMed ID: 2151828
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phonetic prototypes: influence of place of articulation and speaking rate on the internal structure of voicing categories.
    Volaitis LE; Miller JL
    J Acoust Soc Am; 1992 Aug; 92(2 Pt 1):723-35. PubMed ID: 1506527
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-resolution frequency analysis as applied to the singing voice.
    Morsomme D; Remacle M; Millet B
    Folia Phoniatr (Basel); 1993; 45(6):280-7. PubMed ID: 8253452
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Emotional speech acoustic model for Malay: iterative versus isolated unit training.
    Mustafa MB; Ainon RN
    J Acoust Soc Am; 2013 Oct; 134(4):3057-66. PubMed ID: 24116440
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Issues in forensic voice.
    Hollien H; Huntley Bahr R; Harnsberger JD
    J Voice; 2014 Mar; 28(2):170-84. PubMed ID: 24176301
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Margins of tolerance and reference values for the formant vowels for use in voice therapy for the deaf in commercial computer.
    Leme AL; Marcelino MA; Prado PP
    Codas; 2016 9-10; 28(5):610-617. PubMed ID: 27849246
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acoustic correlates of the front/back vowel distinction: a comparison of transition onset versus "steady state".
    Sussman HM
    J Acoust Soc Am; 1990 Jul; 88(1):87-96. PubMed ID: 2380450
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Validity of jitter measures in non-quasi-periodic voices. Part II: the effect of noise.
    Manfredi C; Giordano A; Schoentgen J; Fraj S; Bocchi L; Dejonckere P
    Logoped Phoniatr Vocol; 2011 Jul; 36(2):78-89. PubMed ID: 21609247
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of postlingual deafness on speech production: implications for the role of auditory feedback.
    Waldstein RS
    J Acoust Soc Am; 1990 Nov; 88(5):2099-114. PubMed ID: 2269726
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Regulation of voice quality parameters at the beginning of phonation].
    Lamprecht A
    Folia Phoniatr (Basel); 1990; 42(6):302-11. PubMed ID: 2081582
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of vocalic duration and first formant offset on final voicing judgments by children and adults.
    Jones C
    J Acoust Soc Am; 2005 Jun; 117(6):3385-8. PubMed ID: 16018441
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.