These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 15356864)
1. Putative implication of alpha-amylase loop 7 in the mechanism of substrate binding and reaction products release. André G; Tran V Biopolymers; 2004 Oct; 75(2):95-108. PubMed ID: 15356864 [TBL] [Abstract][Full Text] [Related]
2. Amylose chain behavior in an interacting context. III. Complete occupancy of the AMY2 barley alpha-amylase cleft and comparison with biochemical data. André G; Buléon A; Haser R; Tran V Biopolymers; 1999 Dec; 50(7):751-62. PubMed ID: 10547530 [TBL] [Abstract][Full Text] [Related]
3. Molecular structure of a barley alpha-amylase-inhibitor complex: implications for starch binding and catalysis. Kadziola A; Søgaard M; Svensson B; Haser R J Mol Biol; 1998 Apr; 278(1):205-17. PubMed ID: 9571044 [TBL] [Abstract][Full Text] [Related]
4. Structure of a complex of Thermoactinomyces vulgaris R-47 alpha-amylase 2 with maltohexaose demonstrates the important role of aromatic residues at the reducing end of the substrate binding cleft. Ohtaki A; Mizuno M; Yoshida H; Tonozuka T; Sakano Y; Kamitori S Carbohydr Res; 2006 Jun; 341(8):1041-6. PubMed ID: 16564038 [TBL] [Abstract][Full Text] [Related]
5. Two secondary carbohydrate binding sites on the surface of barley alpha-amylase 1 have distinct functions and display synergy in hydrolysis of starch granules. Nielsen MM; Bozonnet S; Seo ES; Mótyán JA; Andersen JM; Dilokpimol A; Abou Hachem M; Gyémánt G; Naested H; Kandra L; Sigurskjold BW; Svensson B Biochemistry; 2009 Aug; 48(32):7686-97. PubMed ID: 19606835 [TBL] [Abstract][Full Text] [Related]
6. Complexes of Thermoactinomyces vulgaris R-47 alpha-amylase 1 and pullulan model oligossacharides provide new insight into the mechanism for recognizing substrates with alpha-(1,6) glycosidic linkages. Abe A; Yoshida H; Tonozuka T; Sakano Y; Kamitori S FEBS J; 2005 Dec; 272(23):6145-53. PubMed ID: 16302977 [TBL] [Abstract][Full Text] [Related]
7. The 'pair of sugar tongs' site on the non-catalytic domain C of barley alpha-amylase participates in substrate binding and activity. Bozonnet S; Jensen MT; Nielsen MM; Aghajari N; Jensen MH; Kramhøft B; Willemoës M; Tranier S; Haser R; Svensson B FEBS J; 2007 Oct; 274(19):5055-67. PubMed ID: 17803687 [TBL] [Abstract][Full Text] [Related]
8. X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the alpha-amylase family. Uitdehaag JC; Mosi R; Kalk KH; van der Veen BA; Dijkhuizen L; Withers SG; Dijkstra BW Nat Struct Biol; 1999 May; 6(5):432-6. PubMed ID: 10331869 [TBL] [Abstract][Full Text] [Related]
9. Alternative catalytic anions differentially modulate human alpha-amylase activity and specificity. Maurus R; Begum A; Williams LK; Fredriksen JR; Zhang R; Withers SG; Brayer GD Biochemistry; 2008 Mar; 47(11):3332-44. PubMed ID: 18284212 [TBL] [Abstract][Full Text] [Related]
10. Kinetics and energetics of ligand binding determined by microcalorimetry: insights into active site mobility in a psychrophilic alpha-amylase. D'Amico S; Sohier JS; Feller G J Mol Biol; 2006 May; 358(5):1296-304. PubMed ID: 16580683 [TBL] [Abstract][Full Text] [Related]
11. Involvement of individual subsites and secondary substrate binding sites in multiple attack on amylose by barley alpha-amylase. Kramhøft B; Bak-Jensen KS; Mori H; Juge N; Nøhr J; Svensson B Biochemistry; 2005 Feb; 44(6):1824-32. PubMed ID: 15697208 [TBL] [Abstract][Full Text] [Related]
12. Specific inhibition of barley alpha-amylase 2 by barley alpha-amylase/subtilisin inhibitor depends on charge interactions and can be conferred to isozyme 1 by mutation. Rodenburg KW; Vallée F; Juge N; Aghajari N; Guo X; Haser R; Svensson B Eur J Biochem; 2000 Feb; 267(4):1019-29. PubMed ID: 10672010 [TBL] [Abstract][Full Text] [Related]
13. Mapping of barley alpha-amylases and outer subsite mutants reveals dynamic high-affinity subsites and barriers in the long substrate binding cleft. Kandra L; Hachem MA; Gyémánt G; Kramhøft B; Svensson B FEBS Lett; 2006 Sep; 580(21):5049-53. PubMed ID: 16949579 [TBL] [Abstract][Full Text] [Related]
14. Oligosaccharide binding to barley alpha-amylase 1. Robert X; Haser R; Mori H; Svensson B; Aghajari N J Biol Chem; 2005 Sep; 280(38):32968-78. PubMed ID: 16030022 [TBL] [Abstract][Full Text] [Related]
15. Amylolytic enzymes: molecular aspects of their properties. Horváthová V; Janecek S; Sturdík E Gen Physiol Biophys; 2001 Mar; 20(1):7-32. PubMed ID: 11508823 [TBL] [Abstract][Full Text] [Related]
16. Structure of the Aspergillus oryzae alpha-amylase complexed with the inhibitor acarbose at 2.0 A resolution. Brzozowski AM; Davies GJ Biochemistry; 1997 Sep; 36(36):10837-45. PubMed ID: 9283074 [TBL] [Abstract][Full Text] [Related]
17. SusG: a unique cell-membrane-associated alpha-amylase from a prominent human gut symbiont targets complex starch molecules. Koropatkin NM; Smith TJ Structure; 2010 Feb; 18(2):200-15. PubMed ID: 20159465 [TBL] [Abstract][Full Text] [Related]
18. Crucial role of protein flexibility in formation of a stable reaction transition state in an α-amylase catalysis. Kosugi T; Hayashi S J Am Chem Soc; 2012 Apr; 134(16):7045-55. PubMed ID: 22468622 [TBL] [Abstract][Full Text] [Related]
19. Crystal structure of the polyextremophilic alpha-amylase AmyB from Halothermothrix orenii: details of a productive enzyme-substrate complex and an N domain with a role in binding raw starch. Tan TC; Mijts BN; Swaminathan K; Patel BK; Divne C J Mol Biol; 2008 May; 378(4):852-70. PubMed ID: 18387632 [TBL] [Abstract][Full Text] [Related]
20. Multi-site substrate binding and interplay in barley alpha-amylase 1. Nielsen MM; Seo ES; Bozonnet S; Aghajari N; Robert X; Haser R; Svensson B FEBS Lett; 2008 Jul; 582(17):2567-71. PubMed ID: 18588886 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]