These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Reversible denaturation of oligomeric human chaperonin 10: denatured state depends on chemical denaturant. Guidry JJ; Moczygemba CK; Steede NK; Landry SJ; Wittung-Stafshede P Protein Sci; 2000 Nov; 9(11):2109-17. PubMed ID: 11152122 [TBL] [Abstract][Full Text] [Related]
3. The structural stability of the co-chaperonin GroES. Boudker O; Todd MJ; Freire E J Mol Biol; 1997 Oct; 272(5):770-9. PubMed ID: 9368656 [TBL] [Abstract][Full Text] [Related]
4. Mycobacterium tuberculosis chaperonin 10 is secreted in the macrophage phagosome: is secretion due to dissociation and adoption of a partially helical structure at the membrane? Fossati G; Izzo G; Rizzi E; Gancia E; Modena D; Moras ML; Niccolai N; Giannozzi E; Spiga O; Bono L; Marone P; Leone E; Mangili F; Harding S; Errington N; Walters C; Henderson B; Roberts MM; Coates AR; Casetta B; Mascagni P J Bacteriol; 2003 Jul; 185(14):4256-67. PubMed ID: 12837802 [TBL] [Abstract][Full Text] [Related]
5. Accumulation of partly folded states in the equilibrium unfolding of ervatamin A: spectroscopic description of the native, intermediate, and unfolded states. Nallamsetty S; Dubey VK; Pande M; Ambasht PK; Jagannadham MV Biochimie; 2007 Nov; 89(11):1416-24. PubMed ID: 17658212 [TBL] [Abstract][Full Text] [Related]
6. Structural stability of oligomeric chaperonin 10: the role of two beta-strands at the N and C termini in structural stabilization. Sakane I; Ikeda M; Matsumoto C; Higurashi T; Inoue K; Hongo K; Mizobata T; Kawata Y J Mol Biol; 2004 Dec; 344(4):1123-33. PubMed ID: 15544816 [TBL] [Abstract][Full Text] [Related]
7. Conformational plasticity of cryptolepain: accumulation of partially unfolded states in denaturants induced equilibrium unfolding. Pande M; Dubey VK; Sahu V; Jagannadham MV J Biotechnol; 2007 Sep; 131(4):404-17. PubMed ID: 17825936 [TBL] [Abstract][Full Text] [Related]
8. Structural and biological stability of the human interleukin 10 homodimer. Syto R; Murgolo NJ; Braswell EH; Mui P; Huang E; Windsor WT Biochemistry; 1998 Dec; 37(48):16943-51. PubMed ID: 9836587 [TBL] [Abstract][Full Text] [Related]
9. Mycobacterium tuberculosis GroEL homologues unusually exist as lower oligomers and retain the ability to suppress aggregation of substrate proteins. Qamra R; Srinivas V; Mande SC J Mol Biol; 2004 Sep; 342(2):605-17. PubMed ID: 15327959 [TBL] [Abstract][Full Text] [Related]
10. The natively unfolded character of tau and its aggregation to Alzheimer-like paired helical filaments. Jeganathan S; von Bergen M; Mandelkow EM; Mandelkow E Biochemistry; 2008 Oct; 47(40):10526-39. PubMed ID: 18783251 [TBL] [Abstract][Full Text] [Related]
11. Intrinsically disordered protein from a pathogenic mesophile Mycobacterium tuberculosis adopts structured conformation at high temperature. Kumar N; Shukla S; Kumar S; Suryawanshi A; Chaudhry U; Ramachandran S; Maiti S Proteins; 2008 May; 71(3):1123-33. PubMed ID: 18004752 [TBL] [Abstract][Full Text] [Related]
12. Cloning, purification and comparative structural analysis of two hypothetical proteins from Mycobacterium tuberculosis found in the human granuloma during persistence and highly up-regulated under carbon-starvation conditions. Luthra A; Malik SS; Ramachandran R Protein Expr Purif; 2008 Nov; 62(1):64-74. PubMed ID: 18640278 [TBL] [Abstract][Full Text] [Related]
13. The intracellular region of ClC-3 chloride channel is in a partially folded state and a monomer. Li SJ; Kawazaki M; Ogasahara K; Nakagawa A J Biochem; 2006 May; 139(5):813-20. PubMed ID: 16751588 [TBL] [Abstract][Full Text] [Related]
14. Mycobacterium tuberculosis chaperonin 10 forms stable tetrameric and heptameric structures. Implications for its diverse biological activities. Fossati G; Lucietto P; Giuliani P; Coates AR; Harding S; Cölfen H; Legname G; Chan E; Zaliani A; Mascagni P J Biol Chem; 1995 Nov; 270(44):26159-67. PubMed ID: 7592820 [TBL] [Abstract][Full Text] [Related]
15. The structural transition of the prion protein into its pathogenic conformation is induced by unmasking hydrophobic sites. Leffers KW; Schell J; Jansen K; Lucassen R; Kaimann T; Nagel-Steger L; Tatzelt J; Riesner D J Mol Biol; 2004 Nov; 344(3):839-53. PubMed ID: 15533449 [TBL] [Abstract][Full Text] [Related]
16. Dissociation and unfolding of bovine odorant binding protein at acidic pH. Mazzini A; Polverini E; Parisi M; Sorbi RT; Favilla R J Struct Biol; 2007 Jul; 159(1):82-91. PubMed ID: 17428681 [TBL] [Abstract][Full Text] [Related]
17. Secondary structure conversions of Mycobacterium tuberculosis ribonucleotide reductase protein R2 under varying pH and temperature conditions. Georgieva ER; Narvaez AJ; Hedin N; Gräslund A Biophys Chem; 2008 Sep; 137(1):43-8. PubMed ID: 18657348 [TBL] [Abstract][Full Text] [Related]
18. Temperature-dependent subunit exchange and chaperone-like activities of Hsp16.3, a small heat shock protein from Mycobacterium tuberculosis. Fu X; Chang Z Biochem Biophys Res Commun; 2004 Apr; 316(2):291-9. PubMed ID: 15020216 [TBL] [Abstract][Full Text] [Related]
19. The carboxy-terminal domain of heat-shock factor 1 is largely unfolded but can be induced to collapse into a compact, partially structured state. Pattaramanon N; Sangha N; Gafni A Biochemistry; 2007 Mar; 46(11):3405-15. PubMed ID: 17323918 [TBL] [Abstract][Full Text] [Related]
20. The CBS domain protein MJ0729 of Methanocaldococcus jannaschii is a thermostable protein with a pH-dependent self-oligomerization. Martínez-Cruz LA; Encinar JA; Kortazar D; Prieto J; Gómez J; Fernández-Millán P; Lucas M; Arribas EA; Fernández JA; Martínez-Chantar ML; Mato JM; Neira JL Biochemistry; 2009 Mar; 48(12):2760-76. PubMed ID: 19267448 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]