These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 15357180)

  • 1. Online compensation for target motion with scanned particle beams: simulation environment.
    Li Q; Groezinger SO; Haberer T; Rietzel E; Kraft G
    Phys Med Biol; 2004 Jul; 49(14):3029-46. PubMed ID: 15357180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulations to design an online motion compensation system for scanned particle beams.
    Grözinger SO; Rietzel E; Li Q; Bert C; Haberer T; Kraft G
    Phys Med Biol; 2006 Jul; 51(14):3517-31. PubMed ID: 16825746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental verification of a real-time compensation functionality for dose changes due to target motion in scanned particle therapy.
    Luchtenborg R; Saito N; Durante M; Bert C
    Med Phys; 2011 Oct; 38(10):5448-58. PubMed ID: 21992364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a fast multileaf collimator for radiobiological optimized IMRT with scanned beams of photons, electrons, and light ions.
    Svensson R; Larsson S; Gudowska I; Holmberg R; Brahme A
    Med Phys; 2007 Mar; 34(3):877-88. PubMed ID: 17441233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motion compensation with a scanned ion beam: a technical feasibility study.
    Grözinger SO; Bert C; Haberer T; Kraft G; Rietzel E
    Radiat Oncol; 2008 Oct; 3():34. PubMed ID: 18854012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of interplay effects of scanned particle beams and moving targets.
    Bert C; Grözinger SO; Rietzel E
    Phys Med Biol; 2008 May; 53(9):2253-65. PubMed ID: 18401063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 4D in-beam positron emission tomography for verification of motion-compensated ion beam therapy.
    Parodi K; Saito N; Chaudhri N; Richter C; Durante M; Enghardt W; Rietzel E; Bert C
    Med Phys; 2009 Sep; 36(9):4230-43. PubMed ID: 19810497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Field-size dependence of doses of therapeutic carbon beams.
    Kusano Y; Kanai T; Yonai S; Komori M; Ikeda N; Tachikawa Y; Ito A; Uchida H
    Med Phys; 2007 Oct; 34(10):4016-22. PubMed ID: 17985647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design study of a raster scanning system for moving target irradiation in heavy-ion radiotherapy.
    Furukawa T; Inaniwa T; Sato S; Tomitani T; Minohara S; Noda K; Kanai T
    Med Phys; 2007 Mar; 34(3):1085-97. PubMed ID: 17441254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new analytical model for Varian enhanced dynamic wedge factors.
    Kuperman VY
    Phys Med Biol; 2004 Jul; 49(13):2841-51. PubMed ID: 15285251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the initial beam parameters in Monte Carlo linac simulation.
    Aljarrah K; Sharp GC; Neicu T; Jiang SB
    Med Phys; 2006 Apr; 33(4):850-8. PubMed ID: 16696460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 4D particle therapy PET simulation for moving targets irradiated with scanned ion beams.
    Laube K; Menkel S; Bert C; Enghardt W; Helmbrecht S; Saito N; Fiedler F
    Phys Med Biol; 2013 Feb; 58(3):513-33. PubMed ID: 23306167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative dosimetric study on tangential photon beams, intensity-modulated radiation therapy (IMRT) and modulated electron radiotherapy (MERT) for breast cancer treatment.
    Ma CM; Ding M; Li JS; Lee MC; Pawlicki T; Deng J
    Phys Med Biol; 2003 Apr; 48(7):909-24. PubMed ID: 12701895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beam modeling and verification of a photon beam multisource model.
    Ahnesjö A; Weber L; Murman A; Saxner M; Thorslund I; Traneus E
    Med Phys; 2005 Jun; 32(6):1722-37. PubMed ID: 16013730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treatment planning for heavy-ion radiotherapy: physical beam model and dose optimization.
    Krämer M; Jäkel O; Haberer T; Kraft G; Schardt D; Weber U
    Phys Med Biol; 2000 Nov; 45(11):3299-317. PubMed ID: 11098905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative comparison of suitability of various beams for range monitoring with induced beta+ activity in hadron therapy.
    Inaniwa T; Tomitani T; Kohno T; Kanai T
    Phys Med Biol; 2005 Mar; 50(6):1131-45. PubMed ID: 15798313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Final Aperture Superposition Technique applied to fast calculation of electron output factors and depth dose curves.
    Faddegon BA; Villarreal-Barajas JE
    Med Phys; 2005 Nov; 32(11):3286-94. PubMed ID: 16370417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dosimetric impact of geometric errors due to respiratory motion prediction on dynamic multileaf collimator-based four-dimensional radiation delivery.
    Vedam S; Docef A; Fix M; Murphy M; Keall P
    Med Phys; 2005 Jun; 32(6):1607-20. PubMed ID: 16013720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 4D Monte Carlo simulation of proton beam scanning: modelling of variations in time and space to study the interplay between scanning pattern and time-dependent patient geometry.
    Paganetti H; Jiang H; Trofimov A
    Phys Med Biol; 2005 Mar; 50(5):983-90. PubMed ID: 15798270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heuristic optimization of the scanning path of particle therapy beams.
    Pardo J; Donetti M; Bourhaleb F; Ansarinejad A; Attili A; Cirio R; Garella MA; Giordanengo S; Givehchi N; La Rosa A; Marchetto F; Monaco V; Pecka A; Peroni C; Russo G; Sacchi R
    Med Phys; 2009 Jun; 36(6):2043-51. PubMed ID: 19610293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.