These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 15357445)

  • 1. [Simulation of skeletal muscles dielectric behaviour with theoretical model].
    Ma Q; Watanabe M; Suzaki T
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):619-21, 624. PubMed ID: 15357445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The low-frequency dielectric properties of octopus arm muscle measured in vivo.
    Hart FX; Toll RB; Berner NJ; Bennett NH
    Phys Med Biol; 1996 Oct; 41(10):2043-52. PubMed ID: 8912379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The effect of extracellular perfusion on dielectric spectroscopy of skeletal muscle cells].
    Ma Q; Wang L; Hou X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Dec; 22(6):1112-5. PubMed ID: 16422078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting optimal electrical stimulation for repetitive human muscle activation.
    Chou LW; Ding J; Wexler AS; Binder-Macleod SA
    J Electromyogr Kinesiol; 2005 Jun; 15(3):300-9. PubMed ID: 15763677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of T-tubules on dielectric spectra of skeletal muscle simulated by boundary element method with two-dimensional models.
    Sekine K; Hibino C; Kimura M; Asami K
    Bioelectrochemistry; 2007 May; 70(2):532-41. PubMed ID: 17337256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Reduction of dielectric properties of rat gastrocnemius induced by loss of weight].
    Tang Z; Zhao W; Wang L; Ma Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Oct; 26(5):959-62. PubMed ID: 19947467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dielectric properties of E. coli cell as simulated by the three-shell spheroidal model.
    Bai W; Zhao KS; Asami K
    Biophys Chem; 2006 Jul; 122(2):136-42. PubMed ID: 16603309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dielectric behavior of the frog lens in the 100 Hz to 500 MHz range. Simulation with an allocated ellipsoidal-shells model.
    Watanabe M; Suzaki T; Irimajiri A
    Biophys J; 1991 Jan; 59(1):139-49. PubMed ID: 2015379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of random modulation of functional electrical stimulation parameters on muscle fatigue.
    Graham GM; Thrasher TA; Popovic MR
    IEEE Trans Neural Syst Rehabil Eng; 2006 Mar; 14(1):38-45. PubMed ID: 16562630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Computer simulation programs as an alternative for classical nerve, muscle and heart experiments using frog tissues].
    Breves G; Schröder B
    Dtsch Tierarztl Wochenschr; 2000 Mar; 107(3):122-3. PubMed ID: 10774073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double-sigmoid model for fitting fatigue profiles in mouse fast- and slow-twitch muscle.
    Cairns SP; Robinson DM; Loiselle DS
    Exp Physiol; 2008 Jul; 93(7):851-62. PubMed ID: 18344260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo measurement of the low-frequency dielectric spectra of frog skeletal muscle.
    Hart FX; Dunfee WR
    Phys Med Biol; 1993 Aug; 38(8):1099-112. PubMed ID: 8367522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forward Euler stability of the bidomain model of cardiac tissue.
    Puwal S; Roth BJ
    IEEE Trans Biomed Eng; 2007 May; 54(5):951-3. PubMed ID: 17518295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dielectric spectroscopy of Anabaena 7120 protoplast suspensions.
    Zhao K; Bai W; Mi H
    Bioelectrochemistry; 2006 Sep; 69(1):49-57. PubMed ID: 16431165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling force-velocity relation in skeletal muscle isotonic contraction using an artificial neural network.
    Dariani S; Keshavarz M; Parviz M; Raoufy MR; Gharibzadeh S
    Biosystems; 2007; 90(2):529-34. PubMed ID: 17306448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viscoelastic properties of passive skeletal muscle in compression: stress-relaxation behaviour and constitutive modelling.
    Van Loocke M; Lyons CG; Simms CK
    J Biomech; 2008; 41(7):1555-66. PubMed ID: 18396290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of activation frequency on cellular signalling pathways during fatiguing contractions in rat skeletal muscle.
    Russ DW; Lovering RM
    Exp Physiol; 2006 Nov; 91(6):957-66. PubMed ID: 16857718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational modelling identifies the impact of subtle anatomical variations between amphibian and mammalian skeletal muscle on spatiotemporal calcium dynamics.
    Groenendaal W; Jeneson JA; Verhoog PJ; van Riel NA; Ten Eikelder HM; Nicolay K; Hilbers PA
    IET Syst Biol; 2008 Nov; 2(6):411-22. PubMed ID: 19045836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An apparatus for characterization and control of isolated muscle.
    Farahat W; Herr H
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):473-81. PubMed ID: 16425829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermoelectromotive force in living tissues. Frog muscle. Biological tissues as semiconductors. II.
    Lakatos T; Kollár-Mórocz A
    Acta Biochim Biophys Acad Sci Hung; 1969; 4(1):99-108. PubMed ID: 5317070
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.