BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

548 related articles for article (PubMed ID: 15357671)

  • 1. Antimicrobial activity of arginine- and tryptophan-rich hexapeptides: the effects of aromatic clusters, D-amino acid substitution and cyclization.
    Wessolowski A; Bienert M; Dathe M
    J Pept Res; 2004 Oct; 64(4):159-69. PubMed ID: 15357671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclization increases the antimicrobial activity and selectivity of arginine- and tryptophan-containing hexapeptides.
    Dathe M; Nikolenko H; Klose J; Bienert M
    Biochemistry; 2004 Jul; 43(28):9140-50. PubMed ID: 15248771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interaction of arginine- and tryptophan-rich cyclic hexapeptides with Escherichia coli membranes.
    Junkes C; Wessolowski A; Farnaud S; Evans RW; Good L; Bienert M; Dathe M
    J Pept Sci; 2008 Apr; 14(4):535-43. PubMed ID: 17985396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimicrobial activity of short arginine- and tryptophan-rich peptides.
    Strøm MB; Rekdal O; Svendsen JS
    J Pept Sci; 2002 Aug; 8(8):431-7. PubMed ID: 12212806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of potent, non-toxic antimicrobial agents based upon the naturally occurring frog skin peptides, ascaphin-8 and peptide XT-7.
    Conlon JM; Galadari S; Raza H; Condamine E
    Chem Biol Drug Des; 2008 Jul; 72(1):58-64. PubMed ID: 18554256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational design of tryptophan-rich antimicrobial peptides with enhanced antimicrobial activities and specificities.
    Yu HY; Huang KC; Yip BS; Tu CH; Chen HL; Cheng HT; Cheng JW
    Chembiochem; 2010 Nov; 11(16):2273-82. PubMed ID: 20865718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New indolicidin analogues with potent antibacterial activity.
    Ryge TS; Doisy X; Ifrah D; Olsen JE; Hansen PR
    J Pept Res; 2004 Nov; 64(5):171-85. PubMed ID: 15485555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of tryptophan on lipid binding of linear amphipathic cationic antimicrobial peptides.
    Jin Y; Mozsolits H; Hammer J; Zmuda E; Zhu F; Zhang Y; Aguilar MI; Blazyk J
    Biochemistry; 2003 Aug; 42(31):9395-405. PubMed ID: 12899626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimicrobial and cytolytic properties of the frog skin peptide, kassinatuerin-1 and its L- and D-lysine-substituted derivatives.
    Conlon JM; Abraham B; Galadari S; Knoop FC; Sonnevend A; Pál T
    Peptides; 2005 Nov; 26(11):2104-10. PubMed ID: 15885852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and thermodynamic characterization of small cyclic antimicrobial arginine and tryptophan-rich peptides with selectivity for Gram-negative bacteria.
    Bagheri M
    Methods Mol Biol; 2010; 618():87-109. PubMed ID: 20094860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategies for transformation of naturally-occurring amphibian antimicrobial peptides into therapeutically valuable anti-infective agents.
    Conlon JM; Al-Ghaferi N; Abraham B; Leprince J
    Methods; 2007 Aug; 42(4):349-57. PubMed ID: 17560323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of charge and lipophilicity on the antibacterial activity of undecapeptides derived from bovine lactoferricin.
    Strøm MB; Rekdal O; Svendsen JS
    J Pept Sci; 2002 Jan; 8(1):36-43. PubMed ID: 11831560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arginine/Tryptophan-Rich Cyclic α/β-Antimicrobial Peptides: The Roles of Hydrogen Bonding and Hydrophobic/Hydrophilic Solvent-Accessible Surface Areas upon Activity and Membrane Selectivity.
    Bagheri M; Amininasab M; Dathe M
    Chemistry; 2018 Sep; 24(53):14242-14253. PubMed ID: 29969522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell selectivity and anti-inflammatory activity of a Leu/Lys-rich alpha-helical model antimicrobial peptide and its diastereomeric peptides.
    Wang P; Nan YH; Yang ST; Kang SW; Kim Y; Park IS; Hahm KS; Shin SY
    Peptides; 2010 Jul; 31(7):1251-61. PubMed ID: 20363271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane association, electrostatic sequestration, and cytotoxicity of Gly-Leu-rich peptide orthologs with differing functions.
    Vanhoye D; Bruston F; El Amri S; Ladram A; Amiche M; Nicolas P
    Biochemistry; 2004 Jul; 43(26):8391-409. PubMed ID: 15222751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pseudin-2: an antimicrobial peptide with low hemolytic activity from the skin of the paradoxical frog.
    Olson L; Soto AM; Knoop FC; Conlon JM
    Biochem Biophys Res Commun; 2001 Nov; 288(4):1001-5. PubMed ID: 11689009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New potent antimicrobial peptides from the venom of Polistinae wasps and their analogs.
    Cerovský V; Slaninová J; Fucík V; Hulacová H; Borovicková L; Jezek R; Bednárová L
    Peptides; 2008 Jun; 29(6):992-1003. PubMed ID: 18375018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions between the plasma membrane and the antimicrobial peptide HP (2-20) and its analogues derived from Helicobacter pylori.
    Lee KH; Lee DG; Park Y; Kang DI; Shin SY; Hahm KS; Kim Y
    Biochem J; 2006 Feb; 394(Pt 1):105-14. PubMed ID: 16255716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-activity relations of parasin I, a histone H2A-derived antimicrobial peptide.
    Koo YS; Kim JM; Park IY; Yu BJ; Jang SA; Kim KS; Park CB; Cho JH; Kim SC
    Peptides; 2008 Jul; 29(7):1102-8. PubMed ID: 18406495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.