These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 15357850)

  • 41. Antinociceptive and adverse effects of mu- and kappa-opioid receptor agonists: a comparison of morphine and U50488-H.
    Gallantine EL; Meert TF
    Basic Clin Pharmacol Toxicol; 2008 Nov; 103(5):419-27. PubMed ID: 18699797
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Endogenous opioids and feeding behavior: a 30-year historical perspective.
    Bodnar RJ
    Peptides; 2004 Apr; 25(4):697-725. PubMed ID: 15165728
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Involvement of enkephalins and other endogenous opioids in the regulation of esophageal motility.
    Wienbeck M
    Gastroenterol Clin Biol; 1987; 11(3 Pt 2):52B-55B. PubMed ID: 3038651
    [No Abstract]   [Full Text] [Related]  

  • 44. Endogenous opioids, the enteric nervous system and gut motility.
    Kromer W
    Dig Dis; 1990; 8(6):361-73. PubMed ID: 2176937
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Contribution of endogenous opioids to gonadal hormones-induced temporomandibular joint antinociception.
    Fischer L; Arthuri MT; Torres-Chávez KE; Tambeli CH
    Behav Neurosci; 2009 Oct; 123(5):1129-40. PubMed ID: 19824779
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of genes for the ghrelin and motilin receptors and a novel related gene in fish, and stimulation of intestinal motility in zebrafish (Danio rerio) by ghrelin and motilin.
    Olsson C; Holbrook JD; Bompadre G; Jönsson E; Hoyle CH; Sanger GJ; Holmgren S; Andrews PL
    Gen Comp Endocrinol; 2008 Jan; 155(1):217-26. PubMed ID: 17582410
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects and underlying mechanisms of human opiorphin on colonic motility and nociception in mice.
    Tian XZ; Chen J; Xiong W; He T; Chen Q
    Peptides; 2009 Jul; 30(7):1348-54. PubMed ID: 19442408
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of presynaptic nicotinic acetylcholine receptors in the regulation of gastrointestinal motility.
    Mandl P; Kiss JP
    Brain Res Bull; 2007 May; 72(4-6):194-200. PubMed ID: 17452281
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Basal opioid receptor activity, neutral antagonists, and therapeutic opportunities.
    Sadée W; Wang D; Bilsky EJ
    Life Sci; 2005 Feb; 76(13):1427-37. PubMed ID: 15680308
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A role for cannabinoid receptors, but not endogenous opioids, in the antinociceptive activity of the CB2-selective agonist, GW405833.
    Whiteside GT; Gottshall SL; Boulet JM; Chaffer SM; Harrison JE; Pearson MS; Turchin PI; Mark L; Garrison AE; Valenzano KJ
    Eur J Pharmacol; 2005 Dec; 528(1-3):65-72. PubMed ID: 16316650
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development of drugs for gastrointestinal motor disorders: translating science to clinical need.
    Sanger GJ; Alpers DH
    Neurogastroenterol Motil; 2008 Mar; 20(3):177-84. PubMed ID: 18257767
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The roles of different subtypes of opioid receptors in mediating the nucleus submedius opioid-evoked antiallodynia in a neuropathic pain model of rats.
    Wang JY; Zhao M; Yuan YK; Fan GX; Jia H; Tang JS
    Neuroscience; 2006; 138(4):1319-27. PubMed ID: 16472929
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Endogenous opioid-mediated antinociception in cholestatic mice is peripherally, not centrally, mediated.
    Nelson L; Vergnolle N; D'Mello C; Chapman K; Le T; Swain MG
    J Hepatol; 2006 Jun; 44(6):1141-9. PubMed ID: 16466825
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Central effect of mu-opioid agonists on antral motility in conscious rats.
    Tsuchida D; Fukuda H; Koda K; Miyazaki M; Pappas TN; Takahashi T
    Brain Res; 2004 Oct; 1024(1-2):244-50. PubMed ID: 15451387
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Opioid peptides, opioid receptors and mechanism of down regulation.
    Chaturvedi K
    Indian J Exp Biol; 2003 Jan; 41(1):5-13. PubMed ID: 15267130
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Naloxone's suppression of spontaneous and food-conditioned locomotor activity is diminished in mice lacking either the dopamine D(2) receptor or enkephalin.
    Hayward MD; Low MJ
    Brain Res Mol Brain Res; 2005 Oct; 140(1-2):91-8. PubMed ID: 16125819
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Binding studies of novel, non-mammalian enkephalins, structures predicted from frog and lungfish brain cDNA sequences.
    Bojnik E; Magyar A; Tóth G; Bajusz S; Borsodi A; Benyhe S
    Neuroscience; 2009 Jan; 158(2):867-74. PubMed ID: 18977279
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Controlling pain by influencing neurogenic pathways.
    Puehler W; Stein C
    Rheum Dis Clin North Am; 2005 Feb; 31(1):103-13, ix. PubMed ID: 15639058
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Morphine sex-dependently induced place conditioning in adult Wistar rats.
    Karami M; Zarrindast MR
    Eur J Pharmacol; 2008 Mar; 582(1-3):78-87. PubMed ID: 18191832
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Role of ion channel modifiers in reversal of morphine-induced gastrointestinal inertia by prokinetic agents in mice.
    Sandhiya S; Dkhar SA; Krishna PR; Ramaswamy S
    Indian J Exp Biol; 2008 Jan; 46(1):60-5. PubMed ID: 18697573
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.