BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 15358269)

  • 21. Carotenoid photooxidation in photosystem II.
    Tracewell CA; Vrettos JS; Bautista JA; Frank HA; Brudvig GW
    Arch Biochem Biophys; 2001 Jan; 385(1):61-9. PubMed ID: 11361027
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carotenoid-dependent oligomerization of the major chlorophyll a/b light harvesting complex of photosystem II of plants.
    Ruban AV; Phillip D; Young AJ; Horton P
    Biochemistry; 1997 Jun; 36(25):7855-9. PubMed ID: 9201929
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Light-Driven Reconfiguration of a Xanthophyll Violaxanthin in the Photosynthetic Pigment-Protein Complex LHCII: A Resonance Raman Study.
    Grudzinski W; Janik E; Bednarska J; Welc R; Zubik M; Sowinski K; Luchowski R; Gruszecki WI
    J Phys Chem B; 2016 May; 120(19):4373-82. PubMed ID: 27133785
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular adaptation of photoprotection: triplet states in light-harvesting proteins.
    Gall A; Berera R; Alexandre MT; Pascal AA; Bordes L; Mendes-Pinto MM; Andrianambinintsoa S; Stoitchkova KV; Marin A; Valkunas L; Horton P; Kennis JT; van Grondelle R; Ruban A; Robert B
    Biophys J; 2011 Aug; 101(4):934-42. PubMed ID: 21843485
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of the Carotenoid Composition on the Conformational Dynamics of Photosynthetic Light-Harvesting Complexes.
    Tutkus M; Chmeliov J; Rutkauskas D; Ruban AV; Valkunas L
    J Phys Chem Lett; 2017 Dec; 8(23):5898-5906. PubMed ID: 29140702
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystal structure of spinach major light-harvesting complex at 2.72 A resolution.
    Liu Z; Yan H; Wang K; Kuang T; Zhang J; Gui L; An X; Chang W
    Nature; 2004 Mar; 428(6980):287-92. PubMed ID: 15029188
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A theoretical investigation of the photophysical consequences of major plant light-harvesting complex aggregation within the photosynthetic membrane.
    Duffy CD; Johnson MP; Macernis M; Valkunas L; Barford W; Ruban AV
    J Phys Chem B; 2010 Nov; 114(46):15244-53. PubMed ID: 20964339
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Singlet and triplet state transitions of carotenoids in the antenna complexes of higher-plant photosystem I.
    Croce R; Mozzo M; Morosinotto T; Romeo A; Hienerwadel R; Bassi R
    Biochemistry; 2007 Mar; 46(12):3846-55. PubMed ID: 17326666
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carotenoid-induced cooperative formation of bacterial photosynthetic LH1 complex.
    Fiedor L; Akahane J; Koyama Y
    Biochemistry; 2004 Dec; 43(51):16487-96. PubMed ID: 15610043
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activation of zeaxanthin is an obligatory event in the regulation of photosynthetic light harvesting.
    Ruban AV; Pascal AA; Robert B; Horton P
    J Biol Chem; 2002 Mar; 277(10):7785-9. PubMed ID: 11729205
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamics of zeaxanthin binding to the photosystem II monomeric antenna protein Lhcb6 (CP24) and modulation of its photoprotection properties.
    Betterle N; Ballottari M; Hienerwadel R; Dall'Osto L; Bassi R
    Arch Biochem Biophys; 2010 Dec; 504(1):67-77. PubMed ID: 20494647
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intrinsically unstructured phosphoprotein TSP9 regulates light harvesting in Arabidopsis thaliana.
    Fristedt R; Carlberg I; Zygadlo A; Piippo M; Nurmi M; Aro EM; Scheller HV; Vener AV
    Biochemistry; 2009 Jan; 48(2):499-509. PubMed ID: 19113838
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Is PsbS the site of non-photochemical quenching in photosynthesis?
    Niyogi KK; Li XP; Rosenberg V; Jung HS
    J Exp Bot; 2005 Jan; 56(411):375-82. PubMed ID: 15611143
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanisms underlying carotenoid absorption in oxygenic photosynthetic proteins.
    Mendes-Pinto MM; Galzerano D; Telfer A; Pascal AA; Robert B; Ilioaia C
    J Biol Chem; 2013 Jun; 288(26):18758-65. PubMed ID: 23720734
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of carotenoid molecules on the structure of the bacteriochlorophyll binding site in peripheral light-harvesting proteins from Rhodobacter sphaeroides.
    Gall A; Cogdell RJ; Robert B
    Biochemistry; 2003 Jun; 42(23):7252-8. PubMed ID: 12795622
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantum chemical insights in energy dissipation and carotenoid radical cation formation in light harvesting complexes.
    Wormit M; Dreuw A
    Phys Chem Chem Phys; 2007 Jun; 9(23):2917-31. PubMed ID: 17551615
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spectroscopy of the peridinin-chlorophyll-a protein: insight into light-harvesting strategy of marine algae.
    Polívka T; Hiller RG; Frank HA
    Arch Biochem Biophys; 2007 Feb; 458(2):111-20. PubMed ID: 17098207
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [The current concepts of functional role of carotenoids in the eukaryotic chloroplasts].
    Ladygin VG; Shirshikova GN
    Zh Obshch Biol; 2006; 67(3):163-89. PubMed ID: 16862869
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of time-resolved polarization fluorescence spectroscopy in the femtosecond range to photosynthetic systems.
    Akimoto S; Mimuro M
    Photochem Photobiol; 2007; 83(1):163-70. PubMed ID: 16643087
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The light-harvesting antenna of the diatom Phaeodactylum tricornutum. Evidence for a diadinoxanthin-binding subcomplex.
    Guglielmi G; Lavaud J; Rousseau B; Etienne AL; Houmard J; Ruban AV
    FEBS J; 2005 Sep; 272(17):4339-48. PubMed ID: 16128804
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.