These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 15358338)

  • 21. Endothelial NO synthase deficiency promotes smooth muscle progenitor cells in association with upregulation of stromal cell-derived factor-1alpha in a mouse model of carotid artery ligation.
    Zhang LN; Wilson DW; da Cunha V; Sullivan ME; Vergona R; Rutledge JC; Wang YX
    Arterioscler Thromb Vasc Biol; 2006 Apr; 26(4):765-72. PubMed ID: 16456092
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stent-based delivery of tissue inhibitor of metalloproteinase-3 adenovirus inhibits neointimal formation in porcine coronary arteries.
    Johnson TW; Wu YX; Herdeg C; Baumbach A; Newby AC; Karsch KR; Oberhoff M
    Arterioscler Thromb Vasc Biol; 2005 Apr; 25(4):754-9. PubMed ID: 15681295
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel site-specific systemic delivery of Rapamycin with perfluorobutane gas microbubble carrier reduced neointimal formation in a porcine coronary restenosis model.
    Kipshidze NN; Porter TR; Dangas G; Yazdi H; Tio F; Xie F; Hellinga D; Wolfram R; Seabron R; Waksman R; Abizaid A; Roubin G; Iyer S; Colombo A; Leon MB; Moses JW; Iversen P
    Catheter Cardiovasc Interv; 2005 Mar; 64(3):389-94. PubMed ID: 15736246
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stent-based delivery of ABT-578 via a phosphorylcholine surface coating reduces neointimal formation in the porcine coronary model.
    Collingwood R; Gibson L; Sedlik S; Virmani R; Carter AJ
    Catheter Cardiovasc Interv; 2005 Jun; 65(2):227-32. PubMed ID: 15900559
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tyrphostin AGL-2043 eluting stent reduces neointima formation in porcine coronary arteries.
    Banai S; Gertz SD; Gavish L; Chorny M; Perez LS; Lazarovichi G; Ianculuvich M; Hoffmann M; Orlowski M; Golomb G; Levitzki A
    Cardiovasc Res; 2004 Oct; 64(1):165-71. PubMed ID: 15364624
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expression of nonmuscle myosin heavy chain-B isoform in the vessel wall of porcine coronary arteries after balloon angioplasty.
    De Leon H; Scott NA; Martin F; Simonet L; Bernstein KE; Wilcox JN
    Circ Res; 1997 Apr; 80(4):514-9. PubMed ID: 9118482
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel drug-eluting stent coated with an integrin-binding cyclic Arg-Gly-Asp peptide inhibits neointimal hyperplasia by recruiting endothelial progenitor cells.
    Blindt R; Vogt F; Astafieva I; Fach C; Hristov M; Krott N; Seitz B; Kapurniotu A; Kwok C; Dewor M; Bosserhoff AK; Bernhagen J; Hanrath P; Hoffmann R; Weber C
    J Am Coll Cardiol; 2006 May; 47(9):1786-95. PubMed ID: 16682302
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thrombospondin-1 activates medial smooth muscle cells and triggers neointima formation upon mouse carotid artery ligation.
    Moura R; Tjwa M; Vandervoort P; Cludts K; Hoylaerts MF
    Arterioscler Thromb Vasc Biol; 2007 Oct; 27(10):2163-9. PubMed ID: 17761938
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Zotarolimus-eluting stents reduce experimental coronary artery neointimal hyperplasia after 4 weeks.
    Garcia-Touchard A; Burke SE; Toner JL; Cromack K; Schwartz RS
    Eur Heart J; 2006 Apr; 27(8):988-93. PubMed ID: 16449248
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Resistance of the internal mammary artery to restenosis: a histomorphologic study of various porcine arteries.
    Horstick G; Bierbach B; Schlindwein P; Abegunewardene N; Vosseler M; Bittinger F; Becker D; Lauterbach M; Lehr HA; Kempski O
    J Vasc Res; 2008; 45(1):45-53. PubMed ID: 17901706
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition of restenosis formation without compromising reendothelialization as a potential solution to thrombosis following angioplasty?
    Fuchs AT; Kuehnl A; Pelisek J; Rolland PH; Mekkaoui C; Netz H; Nikol S
    Endothelium; 2008; 15(1):85-92. PubMed ID: 18568948
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Site-specific targeting of nanoparticle prednisolone reduces in-stent restenosis in a rabbit model of established atheroma.
    Joner M; Morimoto K; Kasukawa H; Steigerwald K; Merl S; Nakazawa G; John MC; Finn AV; Acampado E; Kolodgie FD; Gold HK; Virmani R
    Arterioscler Thromb Vasc Biol; 2008 Nov; 28(11):1960-6. PubMed ID: 18688017
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanisms of late lumen loss after antiproliferative percutaneous coronary intervention using beta-irradiation in a porcine model of restenosis.
    Deiner C; Loddenkemper C; Rauch U; Rosenthal P; Pauschinger M; Schwimmbeck PL; Schultheiss HP; Pels K
    Cardiovasc Revasc Med; 2007; 8(2):94-8. PubMed ID: 17574167
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative healing response after sirolimus- and paclitaxel-eluting stent implantation in a pig model of restenosis.
    Silva GV; Fernandes MR; Madonna R; Clubb F; Oliveira E; Jimenez-Quevedo P; Branco R; Lopez J; Angeli FS; Sanz-Ruiz R; Vaughn WK; Zheng Y; Baimbridge F; Canales J; Cardoso CO; Assad JA; Falotico R; Perin EC
    Catheter Cardiovasc Interv; 2009 May; 73(6):801-8. PubMed ID: 19309735
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Restenosis is not associated with stent length in a pig model of coronary stent implantation.
    Koutouzis M; Papalois A; Kyrzopoulos S; Dafnomili P; Kyriakides ZS
    Cardiol J; 2008; 15(5):458-62. PubMed ID: 18810722
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biocompatibility of tetramethylpyrazine-eluting stents in normal porcine coronary arteries.
    Ma GS; Chen LJ; Chen Z; Ding S; Shen CX; Feng Y
    Biomed Pharmacother; 2008 Feb; 62(2):125-9. PubMed ID: 17764890
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Early activation of internal medial smooth muscle cells in the rabbit aorta after mechanical injury: relationship with intimal thickening and pharmacological applications.
    Louis H; Lacolley P; Kakou A; Cattan V; Daret D; Safar M; Bonnet J; Daniel Lamazière JM
    Clin Exp Pharmacol Physiol; 2006; 33(1-2):131-8. PubMed ID: 16445712
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of cytochalasin D-eluting stents on intimal hyperplasia in a porcine coronary artery model.
    Salu KJ; Bosmans JM; Huang Y; Hendriks M; Verhoeven M; Levels A; Cooper S; De Scheerder IK; Vrints CJ; Bult H
    Cardiovasc Res; 2006 Feb; 69(2):536-44. PubMed ID: 16386237
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of local heating on restenosis and in-stent neointimal hyperplasia in the atherosclerotic rabbit model: a dose-ranging study.
    Brasselet C; Durand E; Addad F; Vitry F; Chatellier G; Demerens C; Lemitre M; Garnotel R; Urbain D; Bruneval P; Lafont A
    Eur Heart J; 2008 Feb; 29(3):402-12. PubMed ID: 18212388
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Time dependent vascular and myocardial responses of a second generation, small vessel, paclitaxel-eluting stent platform.
    Thompson CA; Huibregtse B; Poff B; Wilson GJ
    Catheter Cardiovasc Interv; 2009 Apr; 73(5):597-604. PubMed ID: 19180652
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.