These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 15358364)

  • 41. Site-specific arylation of rat glutathione s-transferase A1 and A2 by bromobenzene metabolites in vivo.
    Koen YM; Yue W; Galeva NA; Williams TD; Hanzlik RP
    Chem Res Toxicol; 2006 Nov; 19(11):1426-34. PubMed ID: 17112229
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Purification of native, defined chromatin segments.
    Simpson RT; Ducker CE; Diller JD; Ruan C
    Methods Enzymol; 2004; 375():158-70. PubMed ID: 14870665
    [No Abstract]   [Full Text] [Related]  

  • 43. A gene fusion method for assaying interactions of protein transmembrane segments in vivo.
    Leeds JA; Beckwith J
    Methods Enzymol; 2000; 327():165-75. PubMed ID: 11044981
    [No Abstract]   [Full Text] [Related]  

  • 44. Purification and identification of protein complexes that control the cell cycle.
    Burtelow MA; Podust VN; Karnitz LM
    Methods Mol Biol; 2004; 241():247-53. PubMed ID: 14970659
    [No Abstract]   [Full Text] [Related]  

  • 45. Site-Specific Protein Ubiquitylation Using an Engineered, Chimeric E1 Activating Enzyme and E2 SUMO Conjugating Enzyme Ubc9.
    Akimoto G; Fernandes AP; Bode JW
    ACS Cent Sci; 2022 Feb; 8(2):275-281. PubMed ID: 35237717
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chemical Tools and Biochemical Assays for SUMO Specific Proteases (SENPs).
    Jia Y; Claessens LA; Vertegaal ACO; Ovaa H
    ACS Chem Biol; 2019 Nov; 14(11):2389-2395. PubMed ID: 31361113
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A survival selection strategy for engineering synthetic binding proteins that specifically recognize post-translationally phosphorylated proteins.
    Meksiriporn B; Ludwicki MB; Stephens EA; Jiang A; Lee HC; Waraho-Zhmayev D; Kummer L; Brandl F; Plückthun A; DeLisa MP
    Nat Commun; 2019 Apr; 10(1):1830. PubMed ID: 31015433
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Geminivirus Replication Protein Impairs SUMO Conjugation of Proliferating Cellular Nuclear Antigen at Two Acceptor Sites.
    Arroyo-Mateos M; Sabarit B; Maio F; Sánchez-Durán MA; Rosas-Díaz T; Prins M; Ruiz-Albert J; Luna AP; van den Burg HA; Bejarano ER
    J Virol; 2018 Sep; 92(18):. PubMed ID: 29950424
    [TBL] [Abstract][Full Text] [Related]  

  • 49. RNF4 interacts with multiSUMOylated ETV4.
    Aguilar-Martinez E; Guo B; Sharrocks AD
    Wellcome Open Res; 2016; 1():3. PubMed ID: 28612051
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sumoylated HSP90 is a dominantly inherited plasma cell dyscrasias risk factor.
    Preuss KD; Pfreundschuh M; Weigert M; Fadle N; Regitz E; Kubuschok B
    J Clin Invest; 2015 Jan; 125(1):316-23. PubMed ID: 25485683
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Versatile recombinant SUMOylation system for the production of SUMO-modified protein.
    Weber AR; Schuermann D; Schär P
    PLoS One; 2014; 9(7):e102157. PubMed ID: 25007328
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Analysis of PTP1B sumoylation.
    Saha S; Chernoff J
    Methods; 2014 Jan; 65(2):201-6. PubMed ID: 24076082
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Functional reconstitution of a tunable E3-dependent sumoylation pathway in Escherichia coli.
    O'Brien SP; DeLisa MP
    PLoS One; 2012; 7(6):e38671. PubMed ID: 22701689
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Redesigning the NEDD8 pathway with a bacterial genetic screen for ubiquitin-like molecule transfer.
    Guntas G; Kuhlman B
    J Mol Biol; 2012 May; 418(3-4):161-6. PubMed ID: 22391419
    [TBL] [Abstract][Full Text] [Related]  

  • 55. SUMO-SIM interactions regulate the activity of RGSZ2 proteins.
    Garzón J; Rodríguez-Muñoz M; Vicente-Sánchez A; García-López MÁ; Martínez-Murillo R; Fischer T; Sánchez-Blázquez P
    PLoS One; 2011; 6(12):e28557. PubMed ID: 22163035
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synthetic biology approach to reconstituting the ubiquitylation cascade in bacteria.
    Keren-Kaplan T; Attali I; Motamedchaboki K; Davis BA; Tanner N; Reshef Y; Laudon E; Kolot M; Levin-Kravets O; Kleifeld O; Glickman M; Horazdovsky BF; Wolf DA; Prag G
    EMBO J; 2012 Jan; 31(2):378-90. PubMed ID: 22081111
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Caveolin-3 undergoes SUMOylation by the SUMO E3 ligase PIASy: sumoylation affects G-protein-coupled receptor desensitization.
    Fuhs SR; Insel PA
    J Biol Chem; 2011 Apr; 286(17):14830-41. PubMed ID: 21362625
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Disorder targets misorder in nuclear quality control degradation: a disordered ubiquitin ligase directly recognizes its misfolded substrates.
    Rosenbaum JC; Fredrickson EK; Oeser ML; Garrett-Engele CM; Locke MN; Richardson LA; Nelson ZW; Hetrick ED; Milac TI; Gottschling DE; Gardner RG
    Mol Cell; 2011 Jan; 41(1):93-106. PubMed ID: 21211726
    [TBL] [Abstract][Full Text] [Related]  

  • 59. SENP1 participates in the dynamic regulation of Elk-1 SUMOylation.
    Witty J; Aguilar-Martinez E; Sharrocks AD
    Biochem J; 2010 May; 428(2):247-54. PubMed ID: 20337593
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The SUMO E3 ligase activity of Pc2 is coordinated through a SUMO interaction motif.
    Yang SH; Sharrocks AD
    Mol Cell Biol; 2010 May; 30(9):2193-205. PubMed ID: 20176810
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.