These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 15358430)
1. Mycobacterium leprae infection of human Schwann cells depends on selective host kinases and pathogen-modulated endocytic pathways. Alves L; de Mendonça Lima L; da Silva Maeda E; Carvalho L; Holy J; Sarno EN; Pessolani MC; Barker LP FEMS Microbiol Lett; 2004 Sep; 238(2):429-37. PubMed ID: 15358430 [TBL] [Abstract][Full Text] [Related]
2. Lack of Mycobacterium leprae-specific uptake in Schwann cells. Band AH; Bhattacharya A; Talwar GP Int J Lepr Other Mycobact Dis; 1986 Mar; 54(1):71-8. PubMed ID: 3086468 [TBL] [Abstract][Full Text] [Related]
3. Hijacking the ERK signaling pathway: Mycobacterium leprae shuns MEK to drive the proliferation of infected Schwann cells. Noon LA; Lloyd AC Sci STKE; 2005 Nov; 2005(309):pe52. PubMed ID: 16278488 [TBL] [Abstract][Full Text] [Related]
4. Intracellular signals triggered during association of Mycobacterium leprae and Mycobacterium bovis BCG with human monocytes. Lima CS; Ribeiro ML; Souza LA; Sardella AB; Wolf VM; Pessolani MC Microb Pathog; 2001 Jul; 31(1):37-45. PubMed ID: 11427035 [TBL] [Abstract][Full Text] [Related]
6. Differential in vitro modulation of Schwann cell proliferation by Mycobacterium leprae and macrophages in the murine strains, Swiss white and C57Bl/6. Singh N; Birdi TJ; Antia NH J Peripher Nerv Syst; 1998; 3(3):207-16. PubMed ID: 10959251 [TBL] [Abstract][Full Text] [Related]
7. The formation of lipid droplets favors intracellular Mycobacterium leprae survival in SW-10, non-myelinating Schwann cells. Jin SH; An SK; Lee SB PLoS Negl Trop Dis; 2017 Jun; 11(6):e0005687. PubMed ID: 28636650 [TBL] [Abstract][Full Text] [Related]
9. Mycobacterium leprae induces insulin-like growth factor and promotes survival of Schwann cells upon serum withdrawal. Rodrigues LS; da Silva Maeda E; Moreira ME; Tempone AJ; Lobato LS; Ribeiro-Resende VT; Alves L; Rossle S; Lopes UG; Pessolani MC Cell Microbiol; 2010 Jan; 12(1):42-54. PubMed ID: 19732058 [TBL] [Abstract][Full Text] [Related]
10. A new model for studying the effects of Mycobacterium leprae on Schwann cell and neuron interactions. Hagge DA; Oby Robinson S; Scollard D; McCormick G; Williams DL J Infect Dis; 2002 Nov; 186(9):1283-96. PubMed ID: 12402198 [TBL] [Abstract][Full Text] [Related]
11. Contact-dependent demyelination by Mycobacterium leprae in the absence of immune cells. Rambukkana A; Zanazzi G; Tapinos N; Salzer JL Science; 2002 May; 296(5569):927-31. PubMed ID: 11988579 [TBL] [Abstract][Full Text] [Related]
12. Binding of alpha2-laminins by pathogenic and non-pathogenic mycobacteria and adherence to Schwann cells. Marques MA; Ant nio VL; Sarno EN; Brennan PJ; Pessolani MC J Med Microbiol; 2001 Jan; 50(1):23-8. PubMed ID: 11192500 [TBL] [Abstract][Full Text] [Related]
13. Heparin-binding hemagglutinin (HBHA) of Mycobacterium leprae is expressed during infection and enhances bacterial adherence to epithelial cells. de Lima CS; Marques MA; Debrie AS; Almeida EC; Silva CA; Brennan PJ; Sarno EN; Menozzi FD; Pessolani MC FEMS Microbiol Lett; 2009 Mar; 292(2):162-9. PubMed ID: 19220476 [TBL] [Abstract][Full Text] [Related]
14. Biochemical alteration in cells following phagocytosis of M. leprae--the consequence--a basic concept. Mahadevan PR; Antia NH Int J Lepr Other Mycobact Dis; 1980 Jun; 48(2):167-71. PubMed ID: 6995358 [TBL] [Abstract][Full Text] [Related]
15. Mapping the laminin-binding and adhesive domain of the cell surface-associated Hlp/LBP protein from Mycobacterium leprae. Soares de Lima C; Zulianello L; Marques MA; Kim H; Portugal MI; Antunes SL; Menozzi FD; Ottenhoff TH; Brennan PJ; Pessolani MC Microbes Infect; 2005 Jul; 7(9-10):1097-109. PubMed ID: 15919224 [TBL] [Abstract][Full Text] [Related]
16. Morphological and functional characterizations of Schwann cells stimulated with Mycobacterium leprae. Silva TP; Silva AC; Baruque Mda G; Oliveira RB; Machado MP; Sarno EN Mem Inst Oswaldo Cruz; 2008 Jun; 103(4):363-9. PubMed ID: 18660991 [TBL] [Abstract][Full Text] [Related]
17. Macrophage interaction with mycobacteria including M. leprae. Ryter A; Frehel C; Rastogi N; David HL Acta Leprol; 1984; 2(2-4):211-26. PubMed ID: 6398582 [TBL] [Abstract][Full Text] [Related]
18. Alterations in T cell signal transduction by M. leprae antigens is associated with downregulation of second messengers PKC, calcium, calcineurin, MAPK and various transcription factors in leprosy patients. Chattree V; Khanna N; Rao DN Mol Immunol; 2007 Mar; 44(8):2066-77. PubMed ID: 17046060 [TBL] [Abstract][Full Text] [Related]
19. Modulation of lipid droplets by Mycobacterium leprae in Schwann cells: a putative mechanism for host lipid acquisition and bacterial survival in phagosomes. Mattos KA; Lara FA; Oliveira VG; Rodrigues LS; D'Avila H; Melo RC; Manso PP; Sarno EN; Bozza PT; Pessolani MC Cell Microbiol; 2011 Feb; 13(2):259-73. PubMed ID: 20955239 [TBL] [Abstract][Full Text] [Related]
20. Intracellular network of phosphatidylinositol 3-kinase, mammalian target of the rapamycin/70 kDa ribosomal S6 kinase 1, and mitogen-activated protein kinases pathways for regulating mycobacteria-induced IL-23 expression in human macrophages. Yang CS; Song CH; Lee JS; Jung SB; Oh JH; Park J; Kim HJ; Park JK; Paik TH; Jo EK Cell Microbiol; 2006 Jul; 8(7):1158-71. PubMed ID: 16819968 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]