These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 15358770)

  • 1. Desulfoglucosinolate sulfotransferases from Arabidopsis thaliana catalyze the final step in the biosynthesis of the glucosinolate core structure.
    Piotrowski M; Schemenewitz A; Lopukhina A; Müller A; Janowitz T; Weiler EW; Oecking C
    J Biol Chem; 2004 Dec; 279(49):50717-25. PubMed ID: 15358770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning and characterization of a coronatine-regulated tyrosine aminotransferase from Arabidopsis.
    Lopukhina A; Dettenberg M; Weiler EW; Holländer-Czytko H
    Plant Physiol; 2001 Aug; 126(4):1678-87. PubMed ID: 11500565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The fusion of genomes leads to more options: A comparative investigation on the desulfo-glucosinolate sulfotransferases of Brassica napus and homologous proteins of Arabidopsis thaliana.
    Hirschmann F; Papenbrock J
    Plant Physiol Biochem; 2015 Jun; 91():10-9. PubMed ID: 25827495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The three desulfoglucosinolate sulfotransferase proteins in Arabidopsis have different substrate specificities and are differentially expressed.
    Klein M; Reichelt M; Gershenzon J; Papenbrock J
    FEBS J; 2006 Jan; 273(1):122-36. PubMed ID: 16367753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Desulfo-glucosinolate sulfotransferases isolated from several Arabidopsis thaliana ecotypes differ in their sequence and enzyme kinetics.
    Luczak S; Forlani F; Papenbrock J
    Plant Physiol Biochem; 2013 Feb; 63():15-23. PubMed ID: 23220083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways.
    Mikkelsen MD; Petersen BL; Glawischnig E; Jensen AB; Andreasson E; Halkier BA
    Plant Physiol; 2003 Jan; 131(1):298-308. PubMed ID: 12529537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis.
    Chen S; Glawischnig E; Jørgensen K; Naur P; Jørgensen B; Olsen CE; Hansen CH; Rasmussen H; Pickett JA; Halkier BA
    Plant J; 2003 Mar; 33(5):923-37. PubMed ID: 12609033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics and substrate specificities of desulfo-glucosinolate sulfotransferases in Arabidopsis thaliana.
    Klein M; Papenbrock J
    Physiol Plant; 2009 Feb; 135(2):140-9. PubMed ID: 19077143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana.
    Gigolashvili T; Yatusevich R; Berger B; Müller C; Flügge UI
    Plant J; 2007 Jul; 51(2):247-61. PubMed ID: 17521412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and biochemical studies of sulphotransferase 18 from Arabidopsis thaliana explain its substrate specificity and reaction mechanism.
    Hirschmann F; Krause F; Baruch P; Chizhov I; Mueller JW; Manstein DJ; Papenbrock J; Fedorov R
    Sci Rep; 2017 Jun; 7(1):4160. PubMed ID: 28646214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide identification of glucosinolate synthesis genes in Brassica rapa.
    Zang YX; Kim HU; Kim JA; Lim MH; Jin M; Lee SC; Kwon SJ; Lee SI; Hong JK; Park TH; Mun JH; Seol YJ; Hong SB; Park BS
    FEBS J; 2009 Jul; 276(13):3559-74. PubMed ID: 19456863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytochrome P450 CYP79A2 from Arabidopsis thaliana L. Catalyzes the conversion of L-phenylalanine to phenylacetaldoxime in the biosynthesis of benzylglucosinolate.
    Wittstock U; Halkier BA
    J Biol Chem; 2000 May; 275(19):14659-66. PubMed ID: 10799553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical and molecular characterization of a hydroxyjasmonate sulfotransferase from Arabidopsis thaliana.
    Gidda SK; Miersch O; Levitin A; Schmidt J; Wasternack C; Varin L
    J Biol Chem; 2003 May; 278(20):17895-900. PubMed ID: 12637544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The transcript and metabolite networks affected by the two clades of Arabidopsis glucosinolate biosynthesis regulators.
    Malitsky S; Blum E; Less H; Venger I; Elbaz M; Morin S; Eshed Y; Aharoni A
    Plant Physiol; 2008 Dec; 148(4):2021-49. PubMed ID: 18829985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Responses of Arabidopsis thaliana plant lines differing in hydroxylation of aliphatic glucosinolate side chains to feeding of a generalist and specialist caterpillar.
    Rohr F; Ulrichs C; Schreiner M; Zrenner R; Mewis I
    Plant Physiol Biochem; 2012 Jun; 55():52-9. PubMed ID: 22543106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and Mechanism of Isopropylmalate Dehydrogenase from Arabidopsis thaliana: INSIGHTS ON LEUCINE AND ALIPHATIC GLUCOSINOLATE BIOSYNTHESIS.
    Lee SG; Nwumeh R; Jez JM
    J Biol Chem; 2016 Jun; 291(26):13421-30. PubMed ID: 27137927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene duplication in the diversification of secondary metabolism: tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis.
    Kliebenstein DJ; Lambrix VM; Reichelt M; Gershenzon J; Mitchell-Olds T
    Plant Cell; 2001 Mar; 13(3):681-93. PubMed ID: 11251105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changing substrate specificity and iteration of amino acid chain elongation in glucosinolate biosynthesis through targeted mutagenesis of
    Petersen A; Hansen LG; Mirza N; Crocoll C; Mirza O; Halkier BA
    Biosci Rep; 2019 Jul; 39(7):. PubMed ID: 31175145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arabidopsis AtDGK7, the smallest member of plant diacylglycerol kinases (DGKs), displays unique biochemical features and saturates at low substrate concentration: the DGK inhibitor R59022 differentially affects AtDGK2 and AtDGK7 activity in vitro and alters plant growth and development.
    Gómez-Merino FC; Arana-Ceballos FA; Trejo-Téllez LI; Skirycz A; Brearley CA; Dörmann P; Mueller-Roeber B
    J Biol Chem; 2005 Oct; 280(41):34888-99. PubMed ID: 16081412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of indole glucosinolates in Chinese cabbage plants by expression of Arabidopsis CYP79B2, CYP79B3, and CYP83B1.
    Zang YX; Lim MH; Park BS; Hong SB; Kim DH
    Mol Cells; 2008 Apr; 25(2):231-41. PubMed ID: 18414013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.