These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 15359191)

  • 1. A new technique for preliminary estimates of TRU activity on air sample filters and radiological smears.
    Hayes R
    Health Phys; 2004 Oct; 87(4):429-36. PubMed ID: 15359191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of alpha spectroscopy for conducting rapid surveys of transuranic activity on air sample filters and smears.
    Hayes RB; Peña AM; Goff TE
    Health Phys; 2005 Aug; 89(2):172-80. PubMed ID: 16010130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of a rapid, conservative transuranic alpha activity estimation method in air samples.
    Cope SJ; Hayes RB
    J Radiol Prot; 2019 Sep; 39(3):749-765. PubMed ID: 31018192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preliminary Work Toward a Transuranic Activity Estimation Method for Rapid Discrimination of Anthropogenic from Transuranic Activity in Alpha Air Samples.
    Cope SJ; Hayes RB
    Health Phys; 2018 Mar; 114(3):319-327. PubMed ID: 29369938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Problems found using a radon stripping algorithm for retrospective assessment of air filter samples.
    Hayes RB
    Health Phys; 2008 Apr; 94(4):366-72. PubMed ID: 18332729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Curve fitting air sample filter decay curves to estimate transuranic content.
    Hayes RB; Chiou HC
    Health Phys; 2004 Jan; 86(1):80-91. PubMed ID: 14695010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of portable XRF and ICP-OES analysis for lead on air filter samples from a lead ore concentrator mill and a lead-acid battery recycler.
    Harper M; Pacolay B; Hintz P; Andrew ME
    J Environ Monit; 2006 Mar; 8(3):384-92. PubMed ID: 16528423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of radon and thoron progeny measurements based on air filtration.
    Stajic JM; Nikezic D
    Radiat Prot Dosimetry; 2015 Feb; 163(3):333-40. PubMed ID: 24920572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calibration system for radon EEC measurements.
    Mostafa YA; Vasyanovich M; Zhukovsky M; Zaitceva N
    Radiat Prot Dosimetry; 2015 Jun; 164(4):587-90. PubMed ID: 25979737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurements of thoron and radon progeny concentrations in Beijing, China.
    Zhang L; Liu C; Guo Q
    J Radiol Prot; 2008 Dec; 28(4):603-7. PubMed ID: 19029590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. STUDY ON A STEP-ADVANCED FILTER MONITOR FOR CONTINUOUS RADON PROGENY MEASUREMENT.
    Zhang L; Yang J; Guo Q
    Radiat Prot Dosimetry; 2017 Apr; 173(1-3):259-262. PubMed ID: 27940493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Radioactive Source for Evaluating and Demonstrating Time-dependent Performance of Continuous Air Monitors.
    McLean TD; Moore ME; Justus AL; Hudston JA; Barbé B
    Health Phys; 2016 Nov; 111(5):442-50. PubMed ID: 27682903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new technique for measuring the concentrations of airborne radon progeny by using an imaging plate.
    Zhang H; Chen B; Zhao C; Zhuo W
    Radiat Prot Dosimetry; 2012 Nov; 152(1-3):109-13. PubMed ID: 22908348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A COMPARATIVE STUDY OF DIURNAL VARIATION OF RADON AND THORON CONCENTRATIONS IN INDOOR ENVIRONMENT.
    Pant P; Kandari T; Prasad M; Ramola RC
    Radiat Prot Dosimetry; 2016 Oct; 171(2):212-216. PubMed ID: 27032779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of X-ray fluorescence and wet chemical analysis of air filter samples from a scrap lead smelting operation.
    Harper M; Hallmark TS; Andrew ME; Bird AJ
    J Environ Monit; 2004 Oct; 6(10):819-26. PubMed ID: 15480496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Outdoor thoron and progeny in a thorium rich area with old decommissioned mines and waste rock.
    Haanes H; Finne IE; Kolstad T; Mauring A; Dahlgren S; Rudjord AL
    J Environ Radioact; 2016 Oct; 162-163():23-32. PubMed ID: 27214284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of dust loading on the alpha-particle energy resolution of continuous air monitors for thin deposits of radioactive aerosols.
    Huang S; Schery SD; Alcantara RE; Rodgers JC; Wasiolek PT
    Health Phys; 2002 Dec; 83(6):884-91. PubMed ID: 12467296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RADON AND PROGENY SOURCED DOSE ASSESSMENT OF SPA EMPLOYEES IN BALNEOLOGICAL SITES.
    Uzun SK; Demiröz I
    Radiat Prot Dosimetry; 2016 Sep; 170(1-4):331-5. PubMed ID: 26424134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An extensive indoor 222Rn/220Rn monitoring in Shillong, India.
    Mishra R; Tripathy SP; Khathing DT; Dwivedi KK
    Radiat Prot Dosimetry; 2004; 112(3):429-33. PubMed ID: 15537661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Operational experience of continuous air monitoring of smoke for ²³⁹Pu during a wildfire.
    Whicker JJ; Baltz D; Eisele WF; Hart OF; McNaughton MW; Green AA
    Health Phys; 2012 Aug; 103(2 Suppl 2):S161-8. PubMed ID: 22739970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.