BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 15359568)

  • 1. A compartment model for the membrane-coated fiber technique used for determining the absorption parameters of chemicals into lipophilic membranes.
    Xia XR; Baynes RE; Monteiro-Riviere NA; Riviere JE
    Pharm Res; 2004 Aug; 21(8):1345-52. PubMed ID: 15359568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the partition coefficients and absorption kinetic parameters of chemicals in a lipophilic membrane/water system by using a membrane-coated fiber technique.
    Xia XR; Baynes RE; Monteiro-Riviere NA; Riviere JE
    Eur J Pharm Sci; 2005 Jan; 24(1):15-23. PubMed ID: 15626574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel in-vitro technique for studying percutaneous permeation with a membrane-coated fiber and gas chromatography/mass spectrometry: part I. Performances of the technique and determination of the permeation rates and partition coefficients of chemical mixtures.
    Xia XR; Baynes RE; Monteiro-Riviere NA; Leidy RB; Shea D; Riviere JE
    Pharm Res; 2003 Feb; 20(2):275-82. PubMed ID: 12636168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane uptake kinetics of jet fuel aromatic hydrocarbons from aqueous solutions studied by a membrane-coated fiber technique.
    Xia XR; Baynes RE; Monteiro-Riviere NA; Riviere JE
    Toxicol Mech Methods; 2005; 15(4):307-16. PubMed ID: 20021096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An experimentally based approach for predicting skin permeability of chemicals and drugs using a membrane-coated fiber array.
    Xia XR; Baynes RE; Monteiro-Riviere NA; Riviere JE
    Toxicol Appl Pharmacol; 2007 Jun; 221(3):320-8. PubMed ID: 17493652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane-coated fiber array approach for predicting skin permeability of chemical mixtures from different vehicles.
    Riviere JE; Baynes RE; Xia XR
    Toxicol Sci; 2007 Sep; 99(1):153-61. PubMed ID: 17557907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclodextrins as permeation enhancers: some theoretical evaluations and in vitro testing.
    Másson M; Loftsson T; Másson G; Stefánsson E
    J Control Release; 1999 May; 59(1):107-18. PubMed ID: 10210727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The usefulness of an artificial membrane accumulation index for estimation of the bioconcentration factor of organophosphorus pesticides.
    Fujikawa M; Nakao K; Shimizu R; Akamatsu M
    Chemosphere; 2009 Feb; 74(6):751-7. PubMed ID: 19084258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of skin permeability of drugs. I. Comparison with artificial membrane.
    Hatanaka T; Inuma M; Sugibayashi K; Morimoto Y
    Chem Pharm Bull (Tokyo); 1990 Dec; 38(12):3452-9. PubMed ID: 2092945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parameters for pyrethroid insecticide QSAR and PBPK/PD models for human risk assessment.
    Knaak JB; Dary CC; Zhang X; Gerlach RW; Tornero-Velez R; Chang DT; Goldsmith R; Blancato JN
    Rev Environ Contam Toxicol; 2012; 219():1-114. PubMed ID: 22610175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model analysis of flux enhancement across hairless mouse skin induced by chemical permeation enhancers.
    He N; Warner KS; Higuchi WI; Li SK
    Int J Pharm; 2005 Jun; 297(1-2):9-21. PubMed ID: 15907593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partitioning behavior of aromatic components in jet fuel into diverse membrane-coated fibers.
    Baynes RE; Xia XR; Barlow BM; Riviere JE
    J Toxicol Environ Health A; 2007 Nov; 70(22):1879-87. PubMed ID: 17966059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico prediction of human oral absorption based on QSAR analyses of PAMPA permeability.
    Akamatsu M; Fujikawa M; Nakao K; Shimizu R
    Chem Biodivers; 2009 Nov; 6(11):1845-66. PubMed ID: 19937826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting both passive intestinal absorption and the dissociation constant toward albumin using the PAMPA technique.
    Bujard A; Sol M; Carrupt PA; Martel S
    Eur J Pharm Sci; 2014 Oct; 63():36-44. PubMed ID: 25008117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of dose, pH, and osmolarity on nasal absorption of secretin in rats. III. In vitro membrane permeation test and determination of apparent partition coefficient of secretion.
    Ohwaki T; Ishii M; Aoki S; Tatsuishi K; Kayano M
    Chem Pharm Bull (Tokyo); 1989 Dec; 37(12):3359-62. PubMed ID: 2632084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake and depuration of PAHs and chlorinated pesticides by semi-permeable membrane devices (SPMDs) and green-lipped mussels (Perna viridis).
    Richardson BJ; Tse ES; De Luca-Abbott SB; Martin M; Lam PK
    Mar Pollut Bull; 2005; 51(8-12):975-93. PubMed ID: 15907946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing vehicle effects on skin absorption of non-volatile compounds using membrane-coated fiber arrays.
    Karadzovska D; Riviere J
    Cutan Ocul Toxicol; 2013 Oct; 32(4):283-9. PubMed ID: 23590755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of a Silicone Membrane as an Alternative to Human Skin for Determining Skin Permeation Parameters of Chemical Compounds.
    Uchida T; Yakumaru M; Nishioka K; Higashi Y; Sano T; Todo H; Sugibayashi K
    Chem Pharm Bull (Tokyo); 2016; 64(9):1338-46. PubMed ID: 27581638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Studies on the distribution and transport kinetics in membrane and distribution models].
    Pflegel P; Thele V; Ruhnke A
    Pharmazie; 1984 Jul; 39(7):478-81. PubMed ID: 6494227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model for steroid transport across biological membranes.
    Beckett AH; Pickup ME
    J Pharm Pharmacol; 1975 Apr; 27(4):226-34. PubMed ID: 239114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.