These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 15359730)

  • 1. 'Signature sets', minimal fragment sets for identifying protein disulfide structures with cyanylation-based mass mapping methodology.
    Wu W; Huang W; Qi J; Chou YT; Torng E; Watson JT
    J Proteome Res; 2004; 3(4):770-7. PubMed ID: 15359730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated data interpretation based on the concept of "negative signature mass" for mass-mapping disulfide structures of cystinyl proteins.
    Qi J; Wu W; Borges CR; Hang D; Rupp M; Torng E; Watson JT
    J Am Soc Mass Spectrom; 2003 Sep; 14(9):1032-8. PubMed ID: 12954171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of primary amines for nucleophilic cleavage of cyanylated cystinyl proteins in disulfide mass mapping methodology.
    Gallegos-Pérez JL; Rangel-Ordóñez L; Bowman SR; Ngowe CO; Watson JT
    Anal Biochem; 2005 Nov; 346(2):311-9. PubMed ID: 16197914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disulfide bond mapping by cyanylation-induced cleavage and mass spectrometry.
    Wu J
    Methods Mol Biol; 2008; 446():1-20. PubMed ID: 18373246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of hydrogen/deuterium exchange and cyanylation-based methodology for conformational studies of cystinyl proteins.
    Li X; Chou YT; Husain R; Watson JT
    Anal Biochem; 2004 Aug; 331(1):130-7. PubMed ID: 15246005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Algorithm-assisted elucidation of disulfide structure: application of the negative signature mass algorithm to mass-mapping the disulfide structure of the 12-cysteine transforming growth factor beta type II receptor extracellular domain.
    Borges CR; Qi J; Wu W; Torng E; Hinck AP; Watson JT
    Anal Biochem; 2004 Jun; 329(1):91-103. PubMed ID: 15136171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the disulfide structure of sillucin, a highly knotted, cysteine-rich peptide, by cyanylation/cleavage mass mapping.
    Qi J; Wu J; Somkuti GA; Watson JT
    Biochemistry; 2001 Apr; 40(15):4531-8. PubMed ID: 11294620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of disulfide bond position in proteins and sequence analysis of cystine-bridged peptides by tandem mass spectrometry.
    Bean MF; Carr SA
    Anal Biochem; 1992 Mar; 201(2):216-26. PubMed ID: 1632509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of disulfide peptide mapping and determination of disulfide structure of recombinant human osteoprotegerin chimera produced in Escherichia coli.
    Merewether LA; Le J; Jones MD; Lee R; Shimamoto G; Lu HS
    Arch Biochem Biophys; 2000 Mar; 375(1):101-10. PubMed ID: 10683254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping of protein disulfide bonds using negative ion fragmentation with a broadband precursor selection.
    Zhang M; Kaltashov IA
    Anal Chem; 2006 Jul; 78(14):4820-9. PubMed ID: 16841900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DIsulfide Mapping PLanner Software Tool.
    Kist AM; Lampert A; O'Reilly AO
    J Comput Biol; 2018 Apr; 25(4):430-434. PubMed ID: 28817312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel methodology for assignment of disulfide bond pairings in proteins.
    Wu J; Watson JT
    Protein Sci; 1997 Feb; 6(2):391-8. PubMed ID: 9041641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative folding of cystine-rich peptides vs regioselective cysteine pairing strategies.
    Moroder L; Besse D; Musiol HJ; Rudolph-Böhner S; Siedler F
    Biopolymers; 1996; 40(2):207-34. PubMed ID: 8785364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid mass spectrometric determination of disulfide connectivity in peptides and proteins.
    Bhattacharyya M; Gupta K; Gowd KH; Balaram P
    Mol Biosyst; 2013 Jun; 9(6):1340-50. PubMed ID: 23467691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein disulfide bond determination by mass spectrometry.
    Gorman JJ; Wallis TP; Pitt JJ
    Mass Spectrom Rev; 2002; 21(3):183-216. PubMed ID: 12476442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capture and identification of folding intermediates of cystinyl proteins by cyanylation and mass spectrometry.
    Watson JT; Yang Y; Wu J
    J Mol Graph Model; 2001; 19(1):119-28. PubMed ID: 11381521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partial reduction and two-step modification of proteins for identification of disulfide bonds.
    Schnaible V; Wefing S; Bücker A; Wolf-Kümmeth S; Hoffmann D
    Anal Chem; 2002 May; 74(10):2386-93. PubMed ID: 12038765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Post-extraction disulfide bond cleavage for MS/MS quantification of collision-induced dissociation-resistant cystine-cyclized peptides and its application to the ultra-sensitive UPLC-MS/MS bioanalysis of octreotide in plasma.
    Sauter M; Uhl P; Burhenne J; Haefeli WE
    Anal Chim Acta; 2020 Jun; 1114():42-49. PubMed ID: 32359513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assignment of the disulfide bonds in napin, a seed storage protein from Brassica napus, using matrix-assisted laser desorption ionization mass spectrometry.
    Gehrig PM; Biemann K
    Pept Res; 1996; 9(6):308-14. PubMed ID: 9048425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of tumor necrosis factor binding protein disulfide structure: deviation of the fourth domain structure from the TNFR/NGFR family cysteine-rich region signature.
    Jones MD; Hunt J; Liu JL; Patterson SD; Kohno T; Lu HS
    Biochemistry; 1997 Dec; 36(48):14914-23. PubMed ID: 9398215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.