These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 15360056)
1. Effect of heterogeneity in radiosensitivity on LQ based isoeffect formalism for low alpha/beta cancers. Moiseenko V Acta Oncol; 2004; 43(5):499-502. PubMed ID: 15360056 [TBL] [Abstract][Full Text] [Related]
2. Comparison of fractionation schedules in the large heterogeneity limit. Guerrero M Med Phys; 2009 Apr; 36(4):1384-8. PubMed ID: 19472645 [TBL] [Abstract][Full Text] [Related]
3. How low is the alpha/beta ratio for prostate cancer? Wang JZ; Guerrero M; Li XA Int J Radiat Oncol Biol Phys; 2003 Jan; 55(1):194-203. PubMed ID: 12504054 [TBL] [Abstract][Full Text] [Related]
4. The minimal FLASH sparing effect needed to compensate the increase of radiobiological damage due to hypofractionation for late-reacting tissues. Böhlen TT; Germond JF; Bourhis J; Bailat C; Bochud F; Moeckli R Med Phys; 2022 Dec; 49(12):7672-7682. PubMed ID: 35933554 [TBL] [Abstract][Full Text] [Related]
5. Prostate cancer tumour control probability modelling for external beam radiotherapy based on multi-parametric MRI-GTV definition. Sachpazidis I; Mavroidis P; Zamboglou C; Klein CM; Grosu AL; Baltas D Radiat Oncol; 2020 Oct; 15(1):242. PubMed ID: 33081804 [TBL] [Abstract][Full Text] [Related]
6. Comparison of in vitro and in vivo alpha/beta ratios for prostate cancer. Carlson DJ; Stewart RD; Li XA; Jennings K; Wang JZ; Guerrero M Phys Med Biol; 2004 Oct; 49(19):4477-91. PubMed ID: 15552412 [TBL] [Abstract][Full Text] [Related]
7. Effect of patient variation on standard- and hypo-fractionated radiotherapy of prostate cancer. Xiong W; Li J; Ma CM Phys Med Biol; 2005 Apr; 50(7):1483-92. PubMed ID: 15798338 [TBL] [Abstract][Full Text] [Related]
8. Variability of α/β ratios for prostate cancer with the fractionation schedule: caution against using the linear-quadratic model for hypofractionated radiotherapy. Cui M; Gao XS; Li X; Ma M; Qi X; Shibamoto Y Radiat Oncol; 2022 Mar; 17(1):54. PubMed ID: 35303922 [TBL] [Abstract][Full Text] [Related]
9. Impact of prolonged fraction delivery times on tumor control: a note of caution for intensity-modulated radiation therapy (IMRT). Wang JZ; Li XA; D'Souza WD; Stewart RD Int J Radiat Oncol Biol Phys; 2003 Oct; 57(2):543-52. PubMed ID: 12957268 [TBL] [Abstract][Full Text] [Related]
10. Fitting tumor control probability models to biopsy outcome after three-dimensional conformal radiation therapy of prostate cancer: pitfalls in deducing radiobiologic parameters for tumors from clinical data. Levegrün S; Jackson A; Zelefsky MJ; Skwarchuk MW; Venkatraman ES; Schlegel W; Fuks Z; Leibel SA; Ling CC Int J Radiat Oncol Biol Phys; 2001 Nov; 51(4):1064-80. PubMed ID: 11704332 [TBL] [Abstract][Full Text] [Related]
11. Potential implications of the bystander effect on TCP and EUD when considering target volume dose heterogeneity. Balderson MJ; Kirkby C Int J Radiat Biol; 2015 Jan; 91(1):54-61. PubMed ID: 25004946 [TBL] [Abstract][Full Text] [Related]
12. The modelled benefits of individualizing radiotherapy patients' dose using cellular radiosensitivity assays with inherent variability. Mackay RI; Hendry JH Radiother Oncol; 1999 Jan; 50(1):67-75. PubMed ID: 10225559 [TBL] [Abstract][Full Text] [Related]
13. Applicability of the linear-quadratic formalism for modeling local tumor control probability in high dose per fraction stereotactic body radiotherapy for early stage non-small cell lung cancer. Guckenberger M; Klement RJ; Allgäuer M; Appold S; Dieckmann K; Ernst I; Ganswindt U; Holy R; Nestle U; Nevinny-Stickel M; Semrau S; Sterzing F; Wittig A; Andratschke N; Flentje M Radiother Oncol; 2013 Oct; 109(1):13-20. PubMed ID: 24183066 [TBL] [Abstract][Full Text] [Related]
14. The alfa and beta of tumours: a review of parameters of the linear-quadratic model, derived from clinical radiotherapy studies. van Leeuwen CM; Oei AL; Crezee J; Bel A; Franken NAP; Stalpers LJA; Kok HP Radiat Oncol; 2018 May; 13(1):96. PubMed ID: 29769103 [TBL] [Abstract][Full Text] [Related]
15. The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction. Brenner DJ Semin Radiat Oncol; 2008 Oct; 18(4):234-9. PubMed ID: 18725109 [TBL] [Abstract][Full Text] [Related]
16. TCP isoeffect analysis using a heterogeneous distribution of radiosensitivity. Carlone M; Wilkins D; Nyiri B; Raaphorst P Med Phys; 2004 May; 31(5):1176-82. PubMed ID: 15191307 [TBL] [Abstract][Full Text] [Related]
17. Optimal radiotherapy for prostate cancer: predictions for conventional external beam, IMRT, and brachytherapy from radiobiologic models. King CR; DiPetrillo TA; Wazer DE Int J Radiat Oncol Biol Phys; 2000 Jan; 46(1):165-72. PubMed ID: 10656389 [TBL] [Abstract][Full Text] [Related]
18. Dose Response and Fractionation Sensitivity of Prostate Cancer After External Beam Radiation Therapy: A Meta-analysis of Randomized Trials. Vogelius IR; Bentzen SM Int J Radiat Oncol Biol Phys; 2018 Mar; 100(4):858-865. PubMed ID: 29485063 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of external beam radiotherapy and brachytherapy for localized prostate cancer using equivalent uniform dose. Wang JZ; Li XA Med Phys; 2003 Jan; 30(1):34-40. PubMed ID: 12557976 [TBL] [Abstract][Full Text] [Related]
20. The influence of brachytherapy dose heterogeneity on estimates of alpha/beta for prostate cancer. Lindsay PE; Moiseenko VV; Van Dyk J; Battista JJ Phys Med Biol; 2003 Feb; 48(4):507-22. PubMed ID: 12630745 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]