These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 1536019)

  • 1. Dynamics of human lumbar intervertebral joints. Experimental and finite-element investigations.
    Kasra M; Shirazi-Adl A; Drouin G
    Spine (Phila Pa 1976); 1992 Jan; 17(1):93-102. PubMed ID: 1536019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibration characteristics of the human spine under axial cyclic loads: effect of frequency and damping.
    Guo LX; Teo EC; Lee KK; Zhang QH
    Spine (Phila Pa 1976); 2005 Mar; 30(6):631-7. PubMed ID: 15770177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element investigation of the effect of nucleus removal on vibration characteristics of the lumbar spine under a compressive follower preload.
    Fan W; Guo LX
    J Mech Behav Biomed Mater; 2018 Feb; 78():342-351. PubMed ID: 29202297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence prediction of injury and vibration on adjacent components of spine using finite element methods.
    Guo LX; Teo EC
    J Spinal Disord Tech; 2006 Apr; 19(2):118-24. PubMed ID: 16760786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational biomechanics of a lumbar motion segment in pure and combined shear loads.
    Schmidt H; Bashkuev M; Dreischarf M; Rohlmann A; Duda G; Wilke HJ; Shirazi-Adl A
    J Biomech; 2013 Sep; 46(14):2513-21. PubMed ID: 23953504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of different frequencies of axial cyclic loading on time-domain vibration response of the lumbar spine: A finite element study.
    Fan W; Guo LX
    Comput Biol Med; 2017 Jul; 86():75-81. PubMed ID: 28511121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical responses of the intervertebral joints to static and vibrational loading: a finite element study.
    Cheung JT; Zhang M; Chow DH
    Clin Biomech (Bristol, Avon); 2003 Nov; 18(9):790-9. PubMed ID: 14527805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stress analysis of the lumbar disc-body unit in compression. A three-dimensional nonlinear finite element study.
    Shirazi-Adl SA; Shrivastava SC; Ahmed AM
    Spine (Phila Pa 1976); 1984 Mar; 9(2):120-34. PubMed ID: 6233710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibration modes of injured spine at resonant frequencies under vertical vibration.
    Guo LX; Zhang M; Zhang YM; Teo EC
    Spine (Phila Pa 1976); 2009 Sep; 34(19):E682-8. PubMed ID: 19730200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of material properties of intervertebral disc on dynamic response of the human lumbar spine to vertical vibration: a finite element sensitivity study.
    Guo LX; Fan W
    Med Biol Eng Comput; 2019 Jan; 57(1):221-229. PubMed ID: 30083805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite element modeling of the cervical spine: role of intervertebral disc under axial and eccentric loads.
    Kumaresan S; Yoganandan N; Pintar FA; Maiman DJ
    Med Eng Phys; 1999 Dec; 21(10):689-700. PubMed ID: 10717549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Response of the Lumbar Spine to Whole-body Vibration Under a Compressive Follower Preload.
    Guo LX; Fan W
    Spine (Phila Pa 1976); 2018 Feb; 43(3):E143-E153. PubMed ID: 28538593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact response of the intervertebral disc in a finite-element model.
    Lee CK; Kim YE; Lee CS; Hong YM; Jung JM; Goel VK
    Spine (Phila Pa 1976); 2000 Oct; 25(19):2431-9. PubMed ID: 11013493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential response to vibration of three forms of scoliosis during axial cyclic loading: a finite element study.
    Jia S; Li Y; Xie J; Tian T; Zhang S; Han L
    BMC Musculoskelet Disord; 2019 Aug; 20(1):370. PubMed ID: 31409412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence prediction of tissue injury on frequency variations of the lumbar spine under vibration.
    Guo LX; Zhang M; Li JL; Zhang YM; Wang ZW; Teo EC
    OMICS; 2009 Dec; 13(6):521-6. PubMed ID: 19780682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical response of a lumbar motion segment in axial torque alone and combined with compression.
    Shirazi-Adl A; Ahmed AM; Shrivastava SC
    Spine (Phila Pa 1976); 1986 Nov; 11(9):914-27. PubMed ID: 3824069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal and spatial variations of pressure within intervertebral disc nuclei.
    Schmidt H; Shirazi-Adl A
    J Mech Behav Biomed Mater; 2018 Mar; 79():309-313. PubMed ID: 29353774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of large compression loads on lumbar spine in flexion and in torsion using a novel wrapping element.
    Shirazi-Adl A
    J Biomech; 2006; 39(2):267-75. PubMed ID: 16321628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A finite element method study of the effect of vibration on the dynamic biomechanical response of the lumbar spine.
    Zhu S; Dong R; Liu Z; Liu H; Lu Z; Guo Y
    Clin Biomech (Bristol, Avon); 2024 Jan; 111():106164. PubMed ID: 38159326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A finite element study of a lumbar motion segment subjected to pure sagittal plane moments.
    Shirazi-Adl A; Ahmed AM; Shrivastava SC
    J Biomech; 1986; 19(4):331-50. PubMed ID: 3711133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.