These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 1536019)

  • 21. Investigation of vibration characteristics of the ligamentous lumbar spine using the finite element approach.
    Goel VK; Park H; Kong W
    J Biomech Eng; 1994 Nov; 116(4):377-83. PubMed ID: 7869712
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles.
    Goel VK; Kong W; Han JS; Weinstein JN; Gilbertson LG
    Spine (Phila Pa 1976); 1993 Sep; 18(11):1531-41. PubMed ID: 8235826
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nonlinear gross response analysis of a lumbar motion segment in combined sagittal loadings.
    Shirazi-Adl A; Drouin G
    J Biomech Eng; 1988 Aug; 110(3):216-22. PubMed ID: 3172742
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Patient-specific spine models. Part 1: Finite element analysis of the lumbar intervertebral disc--a material sensitivity study.
    Fagan MJ; Julian S; Siddall DJ; Mohsen AM
    Proc Inst Mech Eng H; 2002; 216(5):299-314. PubMed ID: 12365788
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Finite element modeling of lumbar spine and study on its biodynamics].
    Guo L; Liu X; Chen W; Mu E
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Oct; 24(5):1084-8. PubMed ID: 18027702
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nonlinear dynamics of the human lumbar intervertebral disc.
    Marini G; Huber G; Püschel K; Ferguson SJ
    J Biomech; 2015 Feb; 48(3):479-88. PubMed ID: 25573099
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Load-bearing and stress analysis of the human spine under a novel wrapping compression loading.
    Shirazi-Adl A; Parnianpour M
    Clin Biomech (Bristol, Avon); 2000 Dec; 15(10):718-25. PubMed ID: 11050353
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ability of the finite element models to predict response of the human spine to sinusoidal vertical vibration.
    Kong WZ; Goel VK
    Spine (Phila Pa 1976); 2003 Sep; 28(17):1961-7. PubMed ID: 12973142
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis.
    Rohlmann A; Burra NK; Zander T; Bergmann G
    Eur Spine J; 2007 Aug; 16(8):1223-31. PubMed ID: 17206401
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Limitations of the standard linear solid model of intervertebral discs subject to prolonged loading and low-frequency vibration in axial compression.
    Li S; Patwardhan AG; Amirouche FM; Havey R; Meade KP
    J Biomech; 1995 Jul; 28(7):779-90. PubMed ID: 7657676
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Validated Finite Element Analysis of Facet Joint Stress in Degenerative Lumbar Scoliosis.
    Wang L; Zhang B; Chen S; Lu X; Li ZY; Guo Q
    World Neurosurg; 2016 Nov; 95():126-133. PubMed ID: 27521732
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of axial rotation in the etiology of unilateral disc prolapse. An experimental and finite-element analysis.
    Duncan NA; Ahmed AM
    Spine (Phila Pa 1976); 1991 Sep; 16(9):1089-98. PubMed ID: 1948398
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influence of cancellous bone density on load sharing in human lumbar spine: a comparison between an intact and a surgically altered motion segment.
    Pitzen T; Geisler FH; Matthis D; Müller-Storz H; Pedersen K; Steudel WI
    Eur Spine J; 2001 Feb; 10(1):23-9. PubMed ID: 11276832
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of nucleus replacement device properties on lumbar spine mechanics.
    Rundell SA; Guerin HL; Auerbach JD; Kurtz SM
    Spine (Phila Pa 1976); 2009 Sep; 34(19):2022-32. PubMed ID: 19730210
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Study on the process of intervertebral disc disease by the theory of continuum damage mechanics.
    Cui Y; Shen H; Chen Y; Zhang W; Zhu J; Duan Z; Liao Z; Weiqiang L
    Clin Biomech (Bristol, Avon); 2022 Aug; 98():105738. PubMed ID: 35987169
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Does anterior lumbar interbody fusion promote adjacent degeneration in degenerative disc disease? A finite element study.
    Tang S; Rebholz BJ
    J Orthop Sci; 2011 Mar; 16(2):221-8. PubMed ID: 21311928
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Can variations in intervertebral disc height affect the mechanical function of the disc?
    Lu YM; Hutton WC; Gharpuray VM
    Spine (Phila Pa 1976); 1996 Oct; 21(19):2208-16; discussion 2217. PubMed ID: 8902964
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomechanical response of lumbar facet joints under follower preload: a finite element study.
    Du CF; Yang N; Guo JC; Huang YP; Zhang C
    BMC Musculoskelet Disord; 2016 Mar; 17():126. PubMed ID: 26980002
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influences of denucleation on contact force of facet joints under whole body vibration.
    Guo LX; Zhang M; Teo EC
    Ergonomics; 2007 Jul; 50(7):967-78. PubMed ID: 17510817
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.