BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 15360243)

  • 1. Hybrid DFT study of the mechanism of quercetin 2,3-dioxygenase.
    Siegbahn PE
    Inorg Chem; 2004 Sep; 43(19):5944-53. PubMed ID: 15360243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism for catechol ring-cleavage by non-heme iron extradiol dioxygenases.
    Siegbahn PE; Haeffner F
    J Am Chem Soc; 2004 Jul; 126(29):8919-32. PubMed ID: 15264822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Density functional theory studies on the mechanism of the reduction of CO2 to CO catalyzed by copper(I) boryl complexes.
    Zhao H; Lin Z; Marder TB
    J Am Chem Soc; 2006 Dec; 128(49):15637-43. PubMed ID: 17147372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic enzyme.substrate structures provide insight into the reaction mechanism of the copper-dependent quercetin 2,3-dioxygenase.
    Steiner RA; Kalk KH; Dijkstra BW
    Proc Natl Acad Sci U S A; 2002 Dec; 99(26):16625-30. PubMed ID: 12486225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for a new metal in a known active site: purification and characterization of an iron-containing quercetin 2,3-dioxygenase from Bacillus subtilis.
    Barney BM; Schaab MR; LoBrutto R; Francisco WA
    Protein Expr Purif; 2004 May; 35(1):131-41. PubMed ID: 15039076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron(III) complexes of sterically hindered tetradentate monophenolate ligands as functional models for catechol 1,2-dioxygenases: the role of ligand stereoelectronic properties.
    Velusamy M; Mayilmurugan R; Palaniandavar M
    Inorg Chem; 2004 Oct; 43(20):6284-93. PubMed ID: 15446874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygenolysis of flavonoid compounds: DFT description of the mechanism for quercetin.
    Fiorucci S; Golebiowski J; Cabrol-Bass D; Antonczak S
    Chemphyschem; 2004 Nov; 5(11):1726-33. PubMed ID: 15580933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional analysis of the copper-dependent quercetin 2,3-dioxygenase. 2. X-ray absorption studies of native enzyme and anaerobic complexes with the substrates quercetin and myricetin.
    Steiner RA; Meyer-Klaucke W; Dijkstra BW
    Biochemistry; 2002 Jun; 41(25):7963-8. PubMed ID: 12069586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of the C-H bond by electrophilic attack: theoretical study of the reaction mechanism of the aerobic oxidation of alcohols to aldehydes by the Cu(bipy)(2+)/2,2,6,6-tetramethylpiperidinyl-1-oxy cocatalyst system.
    Michel C; Belanzoni P; Gamez P; Reedijk J; Baerends EJ
    Inorg Chem; 2009 Dec; 48(24):11909-20. PubMed ID: 19938864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron(III) complexes of tripodal monophenolate ligands as models for non-heme catechol dioxygenase enzymes: correlation of dioxygenase activity with ligand stereoelectronic properties.
    Mayilmurugan R; Visvaganesan K; Suresh E; Palaniandavar M
    Inorg Chem; 2009 Sep; 48(18):8771-83. PubMed ID: 19694480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EPR characterization of the mononuclear Cu-containing Aspergillus japonicus quercetin 2,3-dioxygenase reveals dramatic changes upon anaerobic binding of substrates.
    Kooter IM; Steiner RA; Dijkstra BW; van Noort PI; Egmond MR; Huber M
    Eur J Biochem; 2002 Jun; 269(12):2971-9. PubMed ID: 12071961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of the copper-containing quercetin 2,3-dioxygenase from Aspergillus japonicus.
    Fusetti F; Schröter KH; Steiner RA; van Noort PI; Pijning T; Rozeboom HJ; Kalk KH; Egmond MR; Dijkstra BW
    Structure; 2002 Feb; 10(2):259-68. PubMed ID: 11839311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 4-Hydroxyphenylpyruvate dioxygenase: a hybrid density functional study of the catalytic reaction mechanism.
    Borowski T; Bassan A; Siegbahn PE
    Biochemistry; 2004 Sep; 43(38):12331-42. PubMed ID: 15379572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism for catechol ring cleavage by non-heme iron intradiol dioxygenases: a hybrid DFT study.
    Borowski T; Siegbahn PE
    J Am Chem Soc; 2006 Oct; 128(39):12941-53. PubMed ID: 17002391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. cis,cis-[(bpy)2RuVO]2O4+ catalyzes water oxidation formally via in situ generation of radicaloid RuIV-O*.
    Yang X; Baik MH
    J Am Chem Soc; 2006 Jun; 128(23):7476-85. PubMed ID: 16756301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dioxygenases without requirement for cofactors and their chemical model reaction: compulsory order ternary complex mechanism of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase involving general base catalysis by histidine 251 and single-electron oxidation of the substrate dianion.
    Frerichs-Deeken U; Ranguelova K; Kappl R; Hüttermann J; Fetzner S
    Biochemistry; 2004 Nov; 43(45):14485-99. PubMed ID: 15533053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate oxidation by copper-dioxygen adducts: mechanistic considerations.
    Shearer J; Zhang CX; Zakharov LN; Rheingold AL; Karlin KD
    J Am Chem Soc; 2005 Apr; 127(15):5469-83. PubMed ID: 15826184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-bridging mechanism for O-O bond cleavage in cytochrome C oxidase.
    Blomberg MR; Siegbahn PE; Wikström M
    Inorg Chem; 2003 Aug; 42(17):5231-43. PubMed ID: 12924894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerium(IV)-mediated oxidation of flavonol with relevance to flavonol 2,4-dioxygenase. Direct evidence for spin delocalization in the flavonoxy radical.
    Kaizer J; Ganszky I; Speier G; Rockenbauer A; Korecz L; Giorgi M; Réglier M; Antonczak S
    J Inorg Biochem; 2007 Jun; 101(6):893-9. PubMed ID: 17408749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DFT study on the catalytic reactivity of a functional model complex for intradiol-cleaving dioxygenases.
    Georgiev V; Noack H; Borowski T; Blomberg MR; Siegbahn PE
    J Phys Chem B; 2010 May; 114(17):5878-85. PubMed ID: 20387788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.