These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 15360274)

  • 1. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose.
    Roman M; Winter WT
    Biomacromolecules; 2004; 5(5):1671-7. PubMed ID: 15360274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites.
    Liu H; Liu D; Yao F; Wu Q
    Bioresour Technol; 2010 Jul; 101(14):5685-92. PubMed ID: 20206507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of dicarboxylic acids for cellulose hydrolysis.
    Mosier NS; Sarikaya A; Ladisch CM; Ladisch MR
    Biotechnol Prog; 2001; 17(3):474-80. PubMed ID: 11386868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved process for the production of cellulose sulfate using sulfuric acid/ethanol solution.
    Chen G; Zhang B; Zhao J; Chen H
    Carbohydr Polym; 2013 Jun; 95(1):332-7. PubMed ID: 23618277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation.
    Mosier NS; Ladisch CM; Ladisch MR
    Biotechnol Bioeng; 2002 Sep; 79(6):610-8. PubMed ID: 12209808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment.
    Hirai A; Inui O; Horii F; Tsuji M
    Langmuir; 2009 Jan; 25(1):497-502. PubMed ID: 19055323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of sulfate groups on the adsorption and activity of cellulases on cellulose substrates.
    Jiang F; Kittle JD; Tan X; Esker AR; Roman M
    Langmuir; 2013 Mar; 29(10):3280-91. PubMed ID: 23452241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulose hydrolysis under extremely low sulfuric acid and high-temperature conditions.
    Kim JS; Lee YY; Torget RW
    Appl Biochem Biotechnol; 2001; 91-93():331-40. PubMed ID: 11963862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scale-up of diluted sulfuric acid hydrolysis for producing sugarcane bagasse hemicellulosic hydrolysate (SBHH).
    Rodrigues Rde C; Rocha GJ; Rodrigues D; Filho HJ; Felipe Md; Pessoa A
    Bioresour Technol; 2010 Feb; 101(4):1247-53. PubMed ID: 19846294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks.
    Silverstein RA; Chen Y; Sharma-Shivappa RR; Boyette MD; Osborne J
    Bioresour Technol; 2007 Nov; 98(16):3000-11. PubMed ID: 17158046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites.
    George J; Ramana KV; Bawa AS; Siddaramaiah
    Int J Biol Macromol; 2011 Jan; 48(1):50-7. PubMed ID: 20920524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of bacterial cellulose nanocrystals: Effect of acid treatments and neutralization.
    Arserim-Uçar DK; Korel F; Liu L; Yam KL
    Food Chem; 2021 Jan; 336():127597. PubMed ID: 32763732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dilute-acid hydrolysis for fermentation of the Bolivian straw material Paja Brava.
    Sanchez G; Pilcher L; Roslander C; Modig T; Galbe M; Liden G
    Bioresour Technol; 2004 Jul; 93(3):249-56. PubMed ID: 15062819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids.
    Lloyd TA; Wyman CE
    Bioresour Technol; 2005 Dec; 96(18):1967-77. PubMed ID: 16112484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SO₃H-functionalized acidic ionic liquids as catalysts for the hydrolysis of cellulose.
    Liu Y; Xiao W; Xia S; Ma P
    Carbohydr Polym; 2013 Jan; 92(1):218-22. PubMed ID: 23218286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of highly charged cellulose nanofibrils using high-pressure homogenization coupled with strong acid hydrolysis pretreatments.
    Tian C; Yi J; Wu Y; Wu Q; Qing Y; Wang L
    Carbohydr Polym; 2016 Jan; 136():485-92. PubMed ID: 26572379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphological and thermal properties of cellulose-montmorillonite nanocomposites.
    Cerruti P; Ambrogi V; Postiglione A; Rychlý J; Matisová-Rychlá L; Carfagna C
    Biomacromolecules; 2008 Nov; 9(11):3004-13. PubMed ID: 18842055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of sulfuric acid loading and residence time on the composition of sugarcane bagasse hydrolysate and its use as a source of xylose for xylitol bioproduction.
    Silva SS; Matos ZR; Carvalho W
    Biotechnol Prog; 2005; 21(5):1449-52. PubMed ID: 16209549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manufacture of cellulose nanocrystals by cation exchange resin-catalyzed hydrolysis of cellulose.
    Tang LR; Huang B; Ou W; Chen XR; Chen YD
    Bioresour Technol; 2011 Dec; 102(23):10973-7. PubMed ID: 21993330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dilute acid pretreatment of rye straw and bermudagrass for ethanol production.
    Sun Y; Cheng JJ
    Bioresour Technol; 2005 Sep; 96(14):1599-606. PubMed ID: 15978993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.