BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 15361582)

  • 1. Gene expression profiling reflects physiological processes in salt acclimation of Synechocystis sp. strain PCC 6803.
    Marin K; Kanesaki Y; Los DA; Murata N; Suzuki I; Hagemann M
    Plant Physiol; 2004 Oct; 136(2):3290-300. PubMed ID: 15361582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative genome analysis of the closely related Synechocystis strains PCC 6714 and PCC 6803.
    Kopf M; Klähn S; Pade N; Weingärtner C; Hagemann M; Voß B; Hess WR
    DNA Res; 2014 Jun; 21(3):255-66. PubMed ID: 24408876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coexpression of Tail Fiber and Tail Protein Genes of the Cyanophage PP Using a Synthetic Genomics Approach Enhances the Salt Tolerance of
    Chen Y; Ge P; Sun T; Feng J; Li G; Zhang J; Zhou J; Jiang J
    Microbiol Spectr; 2023 Jun; 11(3):e0500922. PubMed ID: 37125914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel candidate genes for environmental stresses response in Synechocystis sp. PCC 6803 revealed by machine learning algorithms.
    Karimi-Fard A; Saidi A; TohidFar M; Emami SN
    Braz J Microbiol; 2024 Jun; 55(2):1219-1229. PubMed ID: 38705959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of salt stress on the physiology and the transcriptome of the model streptophyte green alga Chara braunii.
    Heß D; Heise CM; Schubert H; Hess WR; Hagemann M
    Physiol Plant; 2023; 175(6):e14123. PubMed ID: 38148211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of High Temperature Resistance of Synechocystis sp. PCC 6803: An Impact of Histidine Kinase 34.
    Červený J; Sinetova MA; Zavřel T; Los DA
    Life (Basel); 2015 Mar; 5(1):676-99. PubMed ID: 25738257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulation of glycogen and sucrose synthesis increases photosynthetic productivity in cyanobacteria.
    Cantrell M; Cano M; Sebesta J; Paddock T; Xiong W; Chou KJ; Yu J
    Front Microbiol; 2023; 14():1124274. PubMed ID: 37275163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptations of
    Long X; Tian J; Liao X; Tian Y
    RSC Adv; 2018 Jul; 8(48):27525-27536. PubMed ID: 35540019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrative analysis of the salt stress response in cyanobacteria.
    Klähn S; Mikkat S; Riediger M; Georg J; Hess WR; Hagemann M
    Biol Direct; 2021 Dec; 16(1):26. PubMed ID: 34906211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic, Genomics, and Responses to Stresses in Cyanobacteria: Biotechnological Implications.
    Cassier-Chauvat C; Blanc-Garin V; Chauvat F
    Genes (Basel); 2021 Mar; 12(4):. PubMed ID: 33805386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of transcriptional repressor activity of LexA in salt-stress responses of the cyanobacterium Synechocystis sp. PCC 6803.
    Takashima K; Nagao S; Kizawa A; Suzuki T; Dohmae N; Hihara Y
    Sci Rep; 2020 Oct; 10(1):17393. PubMed ID: 33060671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responses of Membranes and the Photosynthetic Apparatus to Salt Stress in Cyanobacteria.
    Yang W; Wang F; Liu LN; Sui N
    Front Plant Sci; 2020; 11():713. PubMed ID: 32582247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing metabolic stress-induced phenotypes of
    Tanniche I; Collakova E; Denbow C; Senger RS
    PeerJ; 2020; 8():e8535. PubMed ID: 32266110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-Term Temporal Metabolic Behavior in Halophilic Cyanobacterium
    Aikawa S; Nishida A; Hasunuma T; Chang JS; Kondo A
    Metabolites; 2019 Dec; 9(12):. PubMed ID: 31817542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Salt-Regulated Accumulation of the Compatible Solutes Sucrose and Glucosylglycerol in Cyanobacteria and Its Biotechnological Potential.
    Kirsch F; Klähn S; Hagemann M
    Front Microbiol; 2019; 10():2139. PubMed ID: 31572343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Universal Molecular Triggers of Stress Responses in Cyanobacterium
    Mironov KS; Sinetova MA; Shumskaya M; Los DA
    Life (Basel); 2019 Aug; 9(3):. PubMed ID: 31434306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insight into the genome and brackish water adaptation strategies of toxic and bloom-forming Baltic Sea Dolichospermum sp. UHCC 0315.
    Teikari JE; Popin RV; Hou S; Wahlsten M; Hess WR; Sivonen K
    Sci Rep; 2019 Mar; 9(1):4888. PubMed ID: 30894564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The drnf1 Gene from the Drought-Adapted Cyanobacterium Nostoc flagelliforme Improved Salt Tolerance in Transgenic Synechocystis and Arabidopsis Plant.
    Cui L; Liu Y; Yang Y; Ye S; Luo H; Qiu B; Gao X
    Genes (Basel); 2018 Sep; 9(9):. PubMed ID: 30181517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative Genomics of the Baltic Sea Toxic Cyanobacteria
    Teikari JE; Hou S; Wahlsten M; Hess WR; Sivonen K
    Front Microbiol; 2018; 9():356. PubMed ID: 29568283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenotypic characterization of Synechocystis sp. PCC 6803 substrains reveals differences in sensitivity to abiotic stress.
    Zavřel T; Očenášová P; Červený J
    PLoS One; 2017; 12(12):e0189130. PubMed ID: 29216280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.