BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 15361785)

  • 1. Mechanism of lipoprotein retention by the extracellular matrix.
    Gustafsson M; Borén J
    Curr Opin Lipidol; 2004 Oct; 15(5):505-14. PubMed ID: 15361785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subendothelial retention of atherogenic lipoproteins in early atherosclerosis.
    Skålén K; Gustafsson M; Rydberg EK; Hultén LM; Wiklund O; Innerarity TL; Borén J
    Nature; 2002 Jun; 417(6890):750-4. PubMed ID: 12066187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retention of atherogenic lipoproteins in the artery wall and its role in atherogenesis.
    Fogelstrand P; Borén J
    Nutr Metab Cardiovasc Dis; 2012 Jan; 22(1):1-7. PubMed ID: 22176921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipoprotein-matrix interactions in macrovascular disease in diabetes.
    Tannock LR; Chait A
    Front Biosci; 2004 May; 9():1728-42. PubMed ID: 14977582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arterial retention of apolipoprotein B(48)- and B(100)-containing lipoproteins in atherogenesis.
    Proctor SD; Vine DF; Mamo JC
    Curr Opin Lipidol; 2002 Oct; 13(5):461-70. PubMed ID: 12352009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The response-to-retention hypothesis of atherogenesis reinforced.
    Williams KJ; Tabas I
    Curr Opin Lipidol; 1998 Oct; 9(5):471-4. PubMed ID: 9812202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The NH2-terminal region of apolipoprotein B is sufficient for lipoprotein association with glycosaminoglycans.
    Goldberg IJ; Wagner WD; Pang L; Paka L; Curtiss LK; DeLozier JA; Shelness GS; Young CS; Pillarisetti S
    J Biol Chem; 1998 Dec; 273(52):35355-61. PubMed ID: 9857078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of native and modified low-density lipoproteins with extracellular matrix.
    Chait A; Wight TN
    Curr Opin Lipidol; 2000 Oct; 11(5):457-63. PubMed ID: 11048888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of the proteoglycan binding site in apolipoprotein B48.
    Flood C; Gustafsson M; Richardson PE; Harvey SC; Segrest JP; Borén J
    J Biol Chem; 2002 Aug; 277(35):32228-33. PubMed ID: 12070165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of extracellular retention of low density lipoproteins in atherosclerosis.
    Borén J; Gustafsson M; Skålén K; Flood C; Innerarity TL
    Curr Opin Lipidol; 2000 Oct; 11(5):451-6. PubMed ID: 11048887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications.
    Tabas I; Williams KJ; Borén J
    Circulation; 2007 Oct; 116(16):1832-44. PubMed ID: 17938300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sphingomyelinase induces aggregation and fusion of small very low-density lipoprotein and intermediate-density lipoprotein particles and increases their retention to human arterial proteoglycans.
    Oörni K; Posio P; Ala-Korpela M; Jauhiainen M; Kovanen PT
    Arterioscler Thromb Vasc Biol; 2005 Aug; 25(8):1678-83. PubMed ID: 15879301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association of apo B lipoproteins with arterial proteoglycans: pathological significance and molecular basis.
    Camejo G; Hurt-Camejo E; Wiklund O; Bondjers G
    Atherosclerosis; 1998 Aug; 139(2):205-22. PubMed ID: 9712326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endothelial cells and atherosclerosis: lipoprotein metabolism, matrix interactions, and monocyte recruitment.
    Saxena U; Goldberg IJ
    Curr Opin Lipidol; 1994 Oct; 5(5):316-22. PubMed ID: 7858905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phospholipase A(2) in vascular disease.
    Hurt-Camejo E; Camejo G; Peilot H; Oörni K; Kovanen P
    Circ Res; 2001 Aug; 89(4):298-304. PubMed ID: 11509445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Apolipoprotein B: a clinically important apolipoprotein which assembles atherogenic lipoproteins and promotes the development of atherosclerosis.
    Olofsson SO; Borèn J
    J Intern Med; 2005 Nov; 258(5):395-410. PubMed ID: 16238675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular consequences of the association of apoB lipoproteins with proteoglycans. Potential contribution to atherogenesis.
    Hurt-Camejo E; Olsson U; Wiklund O; Bondjers G; Camejo G
    Arterioscler Thromb Vasc Biol; 1997 Jun; 17(6):1011-7. PubMed ID: 9194748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subendothelial retention of lipoprotein (a). Evidence that reduced heparan sulfate promotes lipoprotein binding to subendothelial matrix.
    Pillarisetti S; Paka L; Obunike JC; Berglund L; Goldberg IJ
    J Clin Invest; 1997 Aug; 100(4):867-74. PubMed ID: 9259586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relevance of hepatic lipase to the metabolism of triacylglycerol-rich lipoproteins.
    Zambon A; Bertocco S; Vitturi N; Polentarutti V; Vianello D; Crepaldi G
    Biochem Soc Trans; 2003 Oct; 31(Pt 5):1070-4. PubMed ID: 14505482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retention of oxidized LDL by extracellular matrix proteoglycans leads to its uptake by macrophages: an alternative approach to study lipoproteins cellular uptake.
    Kaplan M; Aviram M
    Arterioscler Thromb Vasc Biol; 2001 Mar; 21(3):386-93. PubMed ID: 11231918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.