BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 15361851)

  • 1. Aberrations of the Chk2 tumour suppressor in advanced urinary bladder cancer.
    Bartkova J; Guldberg P; Grønbaek K; Koed K; Primdahl H; Møller K; Lukas J; Ørntoft TF; Bartek J
    Oncogene; 2004 Nov; 23(52):8545-51. PubMed ID: 15361851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chk2 tumour suppressor protein in human spermatogenesis and testicular germ-cell tumours.
    Bartkova J; Falck J; Rajpert-De Meyts E; Skakkebaek NE; Lukas J; Bartek J
    Oncogene; 2001 Sep; 20(41):5897-902. PubMed ID: 11593395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional impact of concomitant versus alternative defects in the Chk2-p53 tumour suppressor pathway.
    Falck J; Lukas C; Protopopova M; Lukas J; Selivanova G; Bartek J
    Oncogene; 2001 Sep; 20(39):5503-10. PubMed ID: 11571648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The DNA damage signalling kinase ATM is aberrantly reduced or lost in BRCA1/BRCA2-deficient and ER/PR/ERBB2-triple-negative breast cancer.
    Tommiska J; Bartkova J; Heinonen M; Hautala L; Kilpivaara O; Eerola H; Aittomäki K; Hofstetter B; Lukas J; von Smitten K; Blomqvist C; Ristimäki A; Heikkilä P; Bartek J; Nevanlinna H
    Oncogene; 2008 Apr; 27(17):2501-6. PubMed ID: 17982490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternative splicing and mutation status of CHEK2 in stage III breast cancer.
    Staalesen V; Falck J; Geisler S; Bartkova J; Børresen-Dale AL; Lukas J; Lillehaug JR; Bartek J; Lønning PE
    Oncogene; 2004 Nov; 23(52):8535-44. PubMed ID: 15361853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis.
    Bartkova J; Horejsí Z; Koed K; Krämer A; Tort F; Zieger K; Guldberg P; Sehested M; Nesland JM; Lukas C; Ørntoft T; Lukas J; Bartek J
    Nature; 2005 Apr; 434(7035):864-70. PubMed ID: 15829956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inducible degradation of checkpoint kinase 2 links to cisplatin-induced resistance in ovarian cancer cells.
    Zhang P; Gao W; Li H; Reed E; Chen F
    Biochem Biophys Res Commun; 2005 Mar; 328(2):567-72. PubMed ID: 15694385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concomitant inactivation of p53 and Chk2 in breast cancer.
    Sullivan A; Yuille M; Repellin C; Reddy A; Reelfs O; Bell A; Dunne B; Gusterson BA; Osin P; Farrell PJ; Yulug I; Evans A; Ozcelik T; Gasco M; Crook T
    Oncogene; 2002 Feb; 21(9):1316-24. PubMed ID: 11857075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The regulation of CHK2 in human cancer.
    Craig AL; Hupp TR
    Oncogene; 2004 Nov; 23(52):8411-8. PubMed ID: 15361833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multicancer-like syndrome in a dog characterized by p53 and cell cycle-checkpoint kinase 2 (CHK2) mutations and sirtuin gene (SIRT1) down-regulation.
    Marfe G; De Martino L; Tafani M; Irno-Consalvo M; Pasolini MP; Navas L; Papparella S; Gambacurta A; Paciello O
    Res Vet Sci; 2012 Aug; 93(1):240-5. PubMed ID: 21890154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CHK2 kinase--a busy messenger.
    Bartek J; Falck J; Lukas J
    Nat Rev Mol Cell Biol; 2001 Dec; 2(12):877-86. PubMed ID: 11733767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aberrations of the CHK2 gene are rare in pediatric solid tumors.
    Chen YY; Takita J; Tanaka K; Ida K; Koh K; Igarashi T; Hanada R; Kikuchi A; Tanaka Y; Toyoda Y; Hayashi Y
    Int J Mol Med; 2005 Jul; 16(1):85-91. PubMed ID: 15942682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the DNA damage checkpoint pathway in intraductal papillary mucinous neoplasms of the pancreas.
    Miyasaka Y; Nagai E; Yamaguchi H; Fujii K; Inoue T; Ohuchida K; Yamada T; Mizumoto K; Tanaka M; Tsuneyoshi M
    Clin Cancer Res; 2007 Aug; 13(15 Pt 1):4371-7. PubMed ID: 17671118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Priming phosphorylation of Chk2 by polo-like kinase 3 (Plk3) mediates its full activation by ATM and a downstream checkpoint in response to DNA damage.
    Bahassi el M; Myer DL; McKenney RJ; Hennigan RF; Stambrook PJ
    Mutat Res; 2006 Apr; 596(1-2):166-76. PubMed ID: 16481012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein phosphatase 2A interacts with Chk2 and regulates phosphorylation at Thr-68 after cisplatin treatment of human ovarian cancer cells.
    Liang X; Reed E; Yu JJ
    Int J Mol Med; 2006 May; 17(5):703-8. PubMed ID: 16596250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Restoration of fragile histidine triad expression restores Chk2 activity in response to ionizing radiation in oral squamous cell carcinoma cells.
    Yutori H; Semba S; Komori T; Yokozaki H
    Cancer Sci; 2008 Mar; 99(3):524-30. PubMed ID: 18167129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The CHEK2 gene and inherited breast cancer susceptibility.
    Nevanlinna H; Bartek J
    Oncogene; 2006 Sep; 25(43):5912-9. PubMed ID: 16998506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The p53 tumor suppressor gene and nuclear protein: basic science review and relevance in the management of bladder cancer.
    Smith ND; Rubenstein JN; Eggener SE; Kozlowski JM
    J Urol; 2003 Apr; 169(4):1219-28. PubMed ID: 12629332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and activation mechanism of the CHK2 DNA damage checkpoint kinase.
    Cai Z; Chehab NH; Pavletich NP
    Mol Cell; 2009 Sep; 35(6):818-29. PubMed ID: 19782031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gallic acid induces G2/M phase cell cycle arrest via regulating 14-3-3β release from Cdc25C and Chk2 activation in human bladder transitional carcinoma cells.
    Ou TT; Wang CJ; Lee YS; Wu CH; Lee HJ
    Mol Nutr Food Res; 2010 Dec; 54(12):1781-90. PubMed ID: 20564478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.