BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 15362093)

  • 1. Non-ideal tracer sedimentation equilibrium: a powerful tool for the characterization of macromolecular interactions in crowded solutions.
    Rivas G; Minton AP
    J Mol Recognit; 2004; 17(5):362-7. PubMed ID: 15362093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model for sedimentation in inhomogeneous media. I. Dynamic density gradients from sedimenting co-solutes.
    Schuck P
    Biophys Chem; 2004 Mar; 108(1-3):187-200. PubMed ID: 15043929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macromolecular crowding in biological systems: hydrodynamics and NMR methods.
    Bernadó P; García de la Torre J; Pons M
    J Mol Recognit; 2004; 17(5):397-407. PubMed ID: 15362098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A strategy for efficient characterization of macromolecular heteroassociations via measurement of sedimentation equilibrium.
    Hsu CS; Minton AP
    J Mol Recognit; 1991; 4(2-3):93-104. PubMed ID: 1810350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracer sedimentation equilibrium: a powerful tool for the quantitative characterization of macromolecular self- and hetero-associations in solution.
    Rivas G; Minton AP
    Biochem Soc Trans; 2003 Oct; 31(Pt 5):1015-9. PubMed ID: 14505471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sedimentation equilibrium in a solution containing an arbitrary number of solute species at arbitrary concentrations: theory and application to concentrated solutions of ribonuclease.
    Zorrilla S; Jiménez M; Lillo P; Rivas G; Minton AP
    Biophys Chem; 2004 Mar; 108(1-3):89-100. PubMed ID: 15043923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sedimentation equilibrium analysis of protein interactions with global implicit mass conservation constraints and systematic noise decomposition.
    Vistica J; Dam J; Balbo A; Yikilmaz E; Mariuzza RA; Rouault TA; Schuck P
    Anal Biochem; 2004 Mar; 326(2):234-56. PubMed ID: 15003564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct analysis of sedimentation equilibrium distributions reflecting complex formation between dissimilar reactants.
    Winzor DJ; Jacobsen MP; Wills PR
    Biochemistry; 1998 Feb; 37(8):2226-33. PubMed ID: 9485368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative assessment of the relative contributions of steric repulsion and chemical interactions to macromolecular crowding.
    Minton AP
    Biopolymers; 2013 Apr; 99(4):239-44. PubMed ID: 23348671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct observation of the self-association of dilute proteins in the presence of inert macromolecules at high concentration via tracer sedimentation equilibrium: theory, experiment, and biological significance.
    Rivas G; Fernandez JA; Minton AP
    Biochemistry; 1999 Jul; 38(29):9379-88. PubMed ID: 10413513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of heterologous protein-protein interactions using analytical ultracentrifugation.
    Rivas G; Stafford W; Minton AP
    Methods; 1999 Oct; 19(2):194-212. PubMed ID: 10527726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytical ultracentrifugation for the study of protein association and assembly.
    Howlett GJ; Minton AP; Rivas G
    Curr Opin Chem Biol; 2006 Oct; 10(5):430-6. PubMed ID: 16935549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative characterization of reversible macromolecular associations via sedimentation equilibrium: an introduction.
    Minton AP
    Exp Mol Med; 2000 Mar; 32(1):1-5. PubMed ID: 10762054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular crowding reduces to a similar extent the diffusion of small solutes and macromolecules: measurement by fluorescence correlation spectroscopy.
    Dauty E; Verkman AS
    J Mol Recognit; 2004; 17(5):441-7. PubMed ID: 15362103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative characterization of macromolecular associations in solution via real-time and postcentrifugation measurements of sedimentation equilibrium: a comparison.
    Darawshe S; Minton AP
    Anal Biochem; 1994 Jul; 220(1):1-4. PubMed ID: 7978232
    [No Abstract]   [Full Text] [Related]  

  • 16. Effects of concentration on the partitioning of macromolecule mixtures in agarose gels.
    Lazzara MJ; Deen WM
    J Colloid Interface Sci; 2004 Apr; 272(2):288-97. PubMed ID: 15028489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of macromolecular crowding upon the stability and state of association of proteins: predictions and observations.
    Minton AP
    J Pharm Sci; 2005 Aug; 94(8):1668-75. PubMed ID: 15986476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligand binding to one-dimensional lattice-like macromolecules: analysis of the McGhee-von Hippel theory implemented in isothermal titration calorimetry.
    Velázquez-Campoy A
    Anal Biochem; 2006 Jan; 348(1):94-104. PubMed ID: 16289442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions between the macromolecule and the gradient-forming solute in isopycnic sedimentation.
    Skerrett RJ
    Biochim Biophys Acta; 1975 Mar; 385(1):28-35. PubMed ID: 1125260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative characterization of temperature-independent polymer-polymer interaction and temperature-dependent protein-protein and protein-polymer interactions in concentrated polymer solutions.
    Fodeke AA
    Eur Biophys J; 2019 Mar; 48(2):189-202. PubMed ID: 30635669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.