These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 15362133)
1. The parameterization and validation of generalized born models using the pairwise descreening approximation. Michel J; Taylor RD; Essex JW J Comput Chem; 2004 Nov; 25(14):1760-70. PubMed ID: 15362133 [TBL] [Abstract][Full Text] [Related]
2. The SGB/NP hydration free energy model based on the surface generalized born solvent reaction field and novel nonpolar hydration free energy estimators. Gallicchio E; Zhang LY; Levy RM J Comput Chem; 2002 Apr; 23(5):517-29. PubMed ID: 11948578 [TBL] [Abstract][Full Text] [Related]
3. Application of the frozen atom approximation to the GB/SA continuum model for solvation free energy. Guvench O; Weiser J; Shenkin P; Kolossváry I; Still WC J Comput Chem; 2002 Jan; 23(2):214-21. PubMed ID: 11924735 [TBL] [Abstract][Full Text] [Related]
4. The treatment of solvation by a generalized Born model and a self-consistent charge-density functional theory-based tight-binding method. Xie L; Liu H J Comput Chem; 2002 Nov; 23(15):1404-15. PubMed ID: 12370943 [TBL] [Abstract][Full Text] [Related]
5. Validation of an automated procedure for the prediction of relative free energies of binding on a set of aldose reductase inhibitors. Ferrari AM; Degliesposti G; Sgobba M; Rastelli G Bioorg Med Chem; 2007 Dec; 15(24):7865-77. PubMed ID: 17870536 [TBL] [Abstract][Full Text] [Related]
6. Continuum solvation models in the linear interaction energy method. Carlsson J; Andér M; Nervall M; Aqvist J J Phys Chem B; 2006 Jun; 110(24):12034-41. PubMed ID: 16800513 [TBL] [Abstract][Full Text] [Related]
7. Solvent Dependence of (14)N Nuclear Magnetic Resonance Chemical Shielding Constants as a Test of the Accuracy of the Computed Polarization of Solute Electron Densities by the Solvent. Ribeiro RF; Marenich AV; Cramer CJ; Truhlar DG J Chem Theory Comput; 2009 Sep; 5(9):2284-300. PubMed ID: 26616615 [TBL] [Abstract][Full Text] [Related]
8. Modeling loop reorganization free energies of acetylcholinesterase: a comparison of explicit and implicit solvent models. Olson MA Proteins; 2004 Dec; 57(4):645-50. PubMed ID: 15481087 [TBL] [Abstract][Full Text] [Related]
9. The generalized Born/volume integral implicit solvent model: estimation of the free energy of hydration using London dispersion instead of atomic surface area. Labute P J Comput Chem; 2008 Jul; 29(10):1693-8. PubMed ID: 18307169 [TBL] [Abstract][Full Text] [Related]
10. A residue-pairwise generalized born scheme suitable for protein design calculations. Archontis G; Simonson T J Phys Chem B; 2005 Dec; 109(47):22667-73. PubMed ID: 16853951 [TBL] [Abstract][Full Text] [Related]
11. Comparative study of generalized born models: Born radii and peptide folding. Zhu J; Alexov E; Honig B J Phys Chem B; 2005 Feb; 109(7):3008-22. PubMed ID: 16851315 [TBL] [Abstract][Full Text] [Related]
12. Detailed considerations for a balanced and broadly applicable force field: a study of substituted benzenes modeled with OPLS-AA. Price DJ; Brooks CL J Comput Chem; 2005 Nov; 26(14):1529-41. PubMed ID: 16108048 [TBL] [Abstract][Full Text] [Related]
13. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. Marenich AV; Cramer CJ; Truhlar DG J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259 [TBL] [Abstract][Full Text] [Related]
14. Computation of hydration free energies of organic solutes with an implicit water model. Basilevsky MV; Leontyev IV; Luschekina SV; Kondakova OA; Sulimov VB J Comput Chem; 2006 Apr; 27(5):552-70. PubMed ID: 16463371 [TBL] [Abstract][Full Text] [Related]
15. Hydration free energies of monovalent ions in transferable intermolecular potential four point fluctuating charge water: an assessment of simulation methodology and force field performance and transferability. Warren GL; Patel S J Chem Phys; 2007 Aug; 127(6):064509. PubMed ID: 17705614 [TBL] [Abstract][Full Text] [Related]
16. Estimation of Absolute Free Energies of Hydration Using Continuum Methods: Accuracy of Partial Charge Models and Optimization of Nonpolar Contributions. Rizzo RC; Aynechi T; Case DA; Kuntz ID J Chem Theory Comput; 2006 Jan; 2(1):128-39. PubMed ID: 26626387 [TBL] [Abstract][Full Text] [Related]
17. Parameterization of the Hamiltonian Dielectric Solvent (HADES) Reaction-Field Method for the Solvation Free Energies of Amino Acid Side-Chain Analogs. Zachmann M; Mathias G; Antes I Chemphyschem; 2015 Jun; 16(8):1739-49. PubMed ID: 25820235 [TBL] [Abstract][Full Text] [Related]
18. Hydration free energies of amino acids: why side chain analog data are not enough. König G; Boresch S J Phys Chem B; 2009 Jul; 113(26):8967-74. PubMed ID: 19507836 [TBL] [Abstract][Full Text] [Related]
19. Effective Born radii in the generalized Born approximation: the importance of being perfect. Onufriev A; Case DA; Bashford D J Comput Chem; 2002 Nov; 23(14):1297-304. PubMed ID: 12214312 [TBL] [Abstract][Full Text] [Related]
20. Potential of mean force of hydrophobic association: dependence on solute size. Sobolewski E; Makowski M; Czaplewski C; Liwo A; Ołdziej S; Scheraga HA J Phys Chem B; 2007 Sep; 111(36):10765-74. PubMed ID: 17713937 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]