BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 15362137)

  • 1. Preprocessing of rotamers for protein design calculations.
    Shah PS; Hom GK; Mayo SL
    J Comput Chem; 2004 Nov; 25(14):1797-800. PubMed ID: 15362137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trading accuracy for speed: A quantitative comparison of search algorithms in protein sequence design.
    Voigt CA; Gordon DB; Mayo SL
    J Mol Biol; 2000 Jun; 299(3):789-803. PubMed ID: 10835284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dead-end elimination with backbone flexibility.
    Georgiev I; Donald BR
    Bioinformatics; 2007 Jul; 23(13):i185-94. PubMed ID: 17646295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dead-end elimination for multistate protein design.
    Yanover C; Fromer M; Shifman JM
    J Comput Chem; 2007 Oct; 28(13):2122-9. PubMed ID: 17471460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved Pruning algorithms and Divide-and-Conquer strategies for Dead-End Elimination, with application to protein design.
    Georgiev I; Lilien RH; Donald BR
    Bioinformatics; 2006 Jul; 22(14):e174-83. PubMed ID: 16873469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MUMBO: a protein-design approach to crystallographic model building and refinement.
    Stiebritz MT; Muller YA
    Acta Crystallogr D Biol Crystallogr; 2006 Jun; 62(Pt 6):648-58. PubMed ID: 16699192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exact rotamer optimization for protein design.
    Gordon DB; Hom GK; Mayo SL; Pierce NA
    J Comput Chem; 2003 Jan; 24(2):232-43. PubMed ID: 12497602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dramatic performance enhancements for the FASTER optimization algorithm.
    Allen BD; Mayo SL
    J Comput Chem; 2006 Jul; 27(10):1071-5. PubMed ID: 16685715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computing van der Waals energies in the context of the rotamer approximation.
    Grigoryan G; Ochoa A; Keating AE
    Proteins; 2007 Sep; 68(4):863-78. PubMed ID: 17554777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein design for diversity of sequences and conformations using dead-end elimination.
    Hanf KJ
    Methods Mol Biol; 2012; 899():127-44. PubMed ID: 22735950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein design using continuous rotamers.
    Gainza P; Roberts KE; Donald BR
    PLoS Comput Biol; 2012 Jan; 8(1):e1002335. PubMed ID: 22279426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The minimized dead-end elimination criterion and its application to protein redesign in a hybrid scoring and search algorithm for computing partition functions over molecular ensembles.
    Georgiev I; Lilien RH; Donald BR
    J Comput Chem; 2008 Jul; 29(10):1527-42. PubMed ID: 18293294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Restricted dead-end elimination: protein redesign with a bounded number of residue mutations.
    Safi M; Lilien RH
    J Comput Chem; 2010 Apr; 31(6):1207-15. PubMed ID: 19885869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational design of a single amino acid sequence that can switch between two distinct protein folds.
    Ambroggio XI; Kuhlman B
    J Am Chem Soc; 2006 Feb; 128(4):1154-61. PubMed ID: 16433531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rotamer optimization for protein design through MAP estimation and problem-size reduction.
    Hong EJ; Lippow SM; Tidor B; Lozano-Pérez T
    J Comput Chem; 2009 Sep; 30(12):1923-45. PubMed ID: 19123203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finding the global minimum: a fuzzy end elimination implementation.
    Keller DA; Shibata M; Marcus E; Ornstein RL; Rein R
    Protein Eng; 1995 Sep; 8(9):893-904. PubMed ID: 8746727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing bound and unbound protein structures using energy calculation and rotamer statistics.
    Koch K; Zöllner F; Neumann S; Kummert F; Sagerer G
    In Silico Biol; 2002; 2(3):351-68. PubMed ID: 12542419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reference energy extremal optimization: a stochastic search algorithm applied to computational protein design.
    Zhang N; Zeng C
    J Comput Chem; 2008 Aug; 29(11):1762-71. PubMed ID: 18351599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An extended dead-end elimination algorithm to determine gap-free lists of low energy states.
    Kloppmann E; Ullmann GM; Becker T
    J Comput Chem; 2007 Nov; 28(14):2325-35. PubMed ID: 17471458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.