These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 15362188)
1. Microbial control of diamondback moth, Plutella xylostella L. (Lepidoptera: Yponomeutidae) using bacteria (Xenorhabdus nematophila) and its metabolites from the entomopathogenic nematode Steinernema carpocapsae. Mahar AN; Munir M; Elawad S; Gowen SR; Hague NG J Zhejiang Univ Sci; 2004 Oct; 5(10):1183-90. PubMed ID: 15362188 [TBL] [Abstract][Full Text] [Related]
2. Application of toxins from the entomopathogenic bacterium, Xenorhabdus nematophila, for the control of insects on foliage. Mahar AN; Al-Siyabi AA; Elawad SA; Hague NG; Gowen SR Commun Agric Appl Biol Sci; 2006; 71(2 Pt A):233-8. PubMed ID: 17390798 [TBL] [Abstract][Full Text] [Related]
3. Pathogenicity of bacterium, Xenorhabdus nematophila isolated from entomopathogenic nematode (Steinernema carpocapsae) and its secretion against Galleria mellonella larvae. Mahar AN; Munir M; Elawad S; Gowen SR; Hague NG J Zhejiang Univ Sci B; 2005 Jun; 6(6):457-63. PubMed ID: 15909327 [TBL] [Abstract][Full Text] [Related]
4. Potentiating effect of Bacillus thuringiensis subsp. kurstaki on pathogenicity of entomopathogenic bacterium Xenorhabdus nematophila K1 against diamondback moth (Lepidoptera: Plutellidae). Jung SC; Kim YG J Econ Entomol; 2007 Feb; 100(1):246-50. PubMed ID: 17370835 [TBL] [Abstract][Full Text] [Related]
5. Xenorhabdus bovienii CS03, the bacterial symbiont of the entomopathogenic nematode Steinernema weiseri, is a non-virulent strain against lepidopteran insects. Bisch G; Pagès S; McMullen JG; Stock SP; Duvic B; Givaudan A; Gaudriault S J Invertebr Pathol; 2015 Jan; 124():15-22. PubMed ID: 25315609 [TBL] [Abstract][Full Text] [Related]
6. Combining Steinernema carpocapsae and Bacillus thuringienis strains for control of diamondback moth (Plutella xylostella). Yi X; Ehlers RU Commun Agric Appl Biol Sci; 2006; 71(3 Pt A):633-6. PubMed ID: 17390802 [TBL] [Abstract][Full Text] [Related]
7. Effect of phenotypic variation in Xenorhabdus nematophila on its mutualistic relationship with the entomopathogenic nematode Steinernema carpocapsae. Sicard M; Tabart J; Boemare NE; Thaler O; Moulia C Parasitology; 2005 Nov; 131(Pt 5):687-94. PubMed ID: 16255827 [TBL] [Abstract][Full Text] [Related]
8. Influence of cell density and phase variants of bacterial symbionts (Xenorhabdus spp.) on dauer juvenile recovery and development of biocontrol nematodes Steinernema carpocapsae and S. feltiae (Nematoda: Rhabditida). Hirao A; Ehlers RU Appl Microbiol Biotechnol; 2009 Aug; 84(1):77-85. PubMed ID: 19319521 [TBL] [Abstract][Full Text] [Related]
9. Diamondback moth in Ukraine: current status and potential for use biological control agents. Likar Y; Stefanovska T Commun Agric Appl Biol Sci; 2009; 74(2):387-92. PubMed ID: 20222594 [TBL] [Abstract][Full Text] [Related]
10. Characterization of Xenorhabdus isolates from La Rioja (Northern Spain) and virulence with and without their symbiotic entomopathogenic nematodes (Nematoda: Steinernematidae). Campos-Herrera R; Tailliez P; Pagès S; Ginibre N; Gutiérrez C; Boemare NE J Invertebr Pathol; 2009 Oct; 102(2):173-81. PubMed ID: 19682458 [TBL] [Abstract][Full Text] [Related]
11. The Steinernema carpocapsae intestinal vesicle contains a subcellular structure with which Xenorhabdus nematophila associates during colonization initiation. Martens EC; Goodrich-Blair H Cell Microbiol; 2005 Dec; 7(12):1723-35. PubMed ID: 16309459 [TBL] [Abstract][Full Text] [Related]
12. New insights into the colonization and release processes of Xenorhabdus nematophila and the morphology and ultrastructure of the bacterial receptacle of its nematode host, Steinernema carpocapsae. Snyder H; Stock SP; Kim SK; Flores-Lara Y; Forst S Appl Environ Microbiol; 2007 Aug; 73(16):5338-46. PubMed ID: 17526783 [TBL] [Abstract][Full Text] [Related]
13. High Levels of the Xenorhabdus nematophila Transcription Factor Lrp Promote Mutualism with the Steinernema carpocapsae Nematode Host. Cao M; Patel T; Rickman T; Goodrich-Blair H; Hussa EA Appl Environ Microbiol; 2017 Jun; 83(12):. PubMed ID: 28389546 [No Abstract] [Full Text] [Related]
14. Pathogenic effect of entomopathogenic nematode-bacterium complexes on terrestrial isopods. Sicard M; Raimond M; Prats O; Lafitte A; Braquart-Varnier C J Invertebr Pathol; 2008 Sep; 99(1):20-7. PubMed ID: 18346756 [TBL] [Abstract][Full Text] [Related]
15. Influence of Xenorhabdus (Gamma-Proteobacteria: Enterobacteriaceae) symbionts on gonad postembryonic development in Steinernema (Nematoda: Steinernematidae) nematodes. Roder AC; Stock SP J Invertebr Pathol; 2018 Mar; 153():65-74. PubMed ID: 29458072 [TBL] [Abstract][Full Text] [Related]
16. Microbial population dynamics in the hemolymph of Manduca sexta infected with Xenorhabdus nematophila and the entomopathogenic nematode Steinernema carpocapsae. Singh S; Reese JM; Casanova-Torres AM; Goodrich-Blair H; Forst S Appl Environ Microbiol; 2014 Jul; 80(14):4277-85. PubMed ID: 24814780 [TBL] [Abstract][Full Text] [Related]
17. Bacterial metabolites of an entomopathogenic bacterium, Xenorhabdus nematophila, inhibit a catalytic activity of phenoloxidase of the diamondback moth, Plutella xylostella. Song CJ; Seo S; Shrestha S; Kim Y J Microbiol Biotechnol; 2011 Mar; 21(3):317-22. PubMed ID: 21464604 [TBL] [Abstract][Full Text] [Related]
18. Effects of an entomopathogen nematode on the immune response of the insect pest red palm weevil: Focus on the host antimicrobial response. Binda-Rossetti S; Mastore M; Protasoni M; Brivio MF J Invertebr Pathol; 2016 Jan; 133():110-9. PubMed ID: 26549224 [TBL] [Abstract][Full Text] [Related]
19. Influence of nematode age and culture conditions on morphological and physiological parameters in the bacterial vesicle of Steinernema carpocapsae (Nematoda: Steinernematidae). Flores-Lara Y; Renneckar D; Forst S; Goodrich-Blair H; Stock P J Invertebr Pathol; 2007 Jun; 95(2):110-8. PubMed ID: 17376477 [TBL] [Abstract][Full Text] [Related]
20. Phospholipase A2 inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Seo S; Lee S; Hong Y; Kim Y Appl Environ Microbiol; 2012 Jun; 78(11):3816-23. PubMed ID: 22447611 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]