These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 15362188)
41. Role of secondary metabolites in establishment of the mutualistic partnership between Xenorhabdus nematophila and the entomopathogenic nematode Steinernema carpocapsae. Singh S; Orr D; Divinagracia E; McGraw J; Dorff K; Forst S Appl Environ Microbiol; 2015 Jan; 81(2):754-64. PubMed ID: 25398871 [TBL] [Abstract][Full Text] [Related]
42. An improved method for generating axenic entomopathogenic nematodes. Yadav S; Shokal U; Forst S; Eleftherianos I BMC Res Notes; 2015 Sep; 8():461. PubMed ID: 26386557 [TBL] [Abstract][Full Text] [Related]
44. Identification and bacterial characteristics of Xenorhabdus hominickii ANU101 from an entomopathogenic nematode, Steinernema monticolum. Park Y; Kang S; Sadekuzzaman M; Kim H; Jung JK; Kim Y J Invertebr Pathol; 2017 Mar; 144():74-87. PubMed ID: 28193447 [TBL] [Abstract][Full Text] [Related]
45. Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase A2 to induce host immunodepression. Kim Y; Ji D; Cho S; Park Y J Invertebr Pathol; 2005 Jul; 89(3):258-64. PubMed ID: 15979640 [TBL] [Abstract][Full Text] [Related]
46. Metabolic differentiation of diamondback moth ( Plutella xylostella (L.)) resistance in cabbage ( Brassica oleracea L. ssp. capitata). Kim JK; Choi SR; Lee J; Park SY; Song SY; Na J; Kim SW; Kim SJ; Nou IS; Lee YH; Park SU; Kim H J Agric Food Chem; 2013 Nov; 61(46):11222-30. PubMed ID: 24144435 [TBL] [Abstract][Full Text] [Related]
47. Germline transformation of the diamondback moth, Plutella xylostella L., using the piggyBac transposable element. Martins S; Naish N; Walker AS; Morrison NI; Scaife S; Fu G; Dafa'alla T; Alphey L Insect Mol Biol; 2012 Aug; 21(4):414-21. PubMed ID: 22621377 [TBL] [Abstract][Full Text] [Related]
48. Entomopathogens (Beauveria bassiana and Steinernema carpocapsae) for biological control of bark-feeding moth Indarbela dea on field-infested litchi trees. Schulte MJ; Martin K; Büchse A; Sauerborn J Pest Manag Sci; 2009 Jan; 65(1):105-12. PubMed ID: 18823078 [TBL] [Abstract][Full Text] [Related]
50. Suppression of diamondback moth (Lepidoptera: Plutellidae) with an entomopathogenic nematode (Rhabditida: Steinernematidae) and Bacillus thuringiensis Berliner. Baur ME; Kaya HK; Tabashnik BE; Chilcutt CF J Econ Entomol; 1998 Oct; 91(5):1089-95. PubMed ID: 9805498 [TBL] [Abstract][Full Text] [Related]
51. Xenorhabdus nematophila bacteria shift from mutualistic to virulent Lrp-dependent phenotypes within the receptacles of Steinernema carpocapsae insect-infective stage nematodes. Cao M; Goodrich-Blair H Environ Microbiol; 2020 Dec; 22(12):5433-5449. PubMed ID: 33078552 [TBL] [Abstract][Full Text] [Related]
52. Effect of bacterial symbionts Xenorhabdus on mortality of infective juveniles of two Steinernema species. Emelianoff V; Sicard M; Le Brun N; Moulia C; Ferdy JB Parasitol Res; 2007 Feb; 100(3):657-9. PubMed ID: 16944202 [TBL] [Abstract][Full Text] [Related]
53. Studying the Symbiotic Bacterium Stilwell MD; Cao M; Goodrich-Blair H; Weibel DB mSphere; 2018; 3(1):. PubMed ID: 29299529 [TBL] [Abstract][Full Text] [Related]
54. Improving the biocontrol potential of entomopathogenic nematodes against Mamestra brassicae: effect of spray application technique, adjuvants and an attractant. Beck B; Brusselman E; Nuyttens D; Moens M; Temmerman F; Pollet S; Van Weyenberg S; Spanoghe P Pest Manag Sci; 2014 Jan; 70(1):103-12. PubMed ID: 23512412 [TBL] [Abstract][Full Text] [Related]
55. [Repellent and antifeedant effect of secondary metabolites of non-host plants on Plutella xylostella]. Wei H; Hou Y; Yang G; You M Ying Yong Sheng Tai Xue Bao; 2004 Mar; 15(3):473-6. PubMed ID: 15228000 [TBL] [Abstract][Full Text] [Related]
56. Immunosuppression induced by entomopathogens is rescued by addition of apolipophorin III in the diamondback moth, Plutella xylostella. Son Y; Kim Y J Invertebr Pathol; 2011 Feb; 106(2):217-22. PubMed ID: 20937282 [TBL] [Abstract][Full Text] [Related]
57. Manifold aspects of specificity in a nematode-bacterium mutualism. Chapuis E; Emelianoff V; Paulmier V; Le Brun N; Pagès S; Sicard M; Ferdy JB J Evol Biol; 2009 Oct; 22(10):2104-17. PubMed ID: 19732258 [TBL] [Abstract][Full Text] [Related]
58. Submerged monoxenic culture of the entomopathogenic nematode Steinernema carpocapsae in an internal-loop airlift bioreactor using two configurations of the inner tube. Chavarría-Hernández N; Sanjuan-Galindo R; Rodríguez-Pastrana BR; Medina-Torres L; Rodríguez-Hernández AI Biotechnol Bioeng; 2007 Sep; 98(1):167-76. PubMed ID: 17252612 [TBL] [Abstract][Full Text] [Related]
59. The insect pathogenic bacterium Xenorhabdus innexi has attenuated virulence in multiple insect model hosts yet encodes a potent mosquitocidal toxin. Kim IH; Aryal SK; Aghai DT; Casanova-Torres ÁM; Hillman K; Kozuch MP; Mans EJ; Mauer TJ; Ogier JC; Ensign JC; Gaudriault S; Goodman WG; Goodrich-Blair H; Dillman AR BMC Genomics; 2017 Dec; 18(1):927. PubMed ID: 29191166 [TBL] [Abstract][Full Text] [Related]
60. Differential Change Patterns of Main Antimicrobial Peptide Genes During Infection of Entomopathogenic Nematodes and Their Symbiotic Bacteria. Darsouei R; Karimi J; Ghadamyari M; Hosseini M J Parasitol; 2017 Aug; 103(4):349-358. PubMed ID: 28395586 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]