BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 15362865)

  • 1. Bifunctional catalysis by CDP-ribitol synthase: convergent recruitment of reductase and cytidylyltransferase activities in Haemophilus influenzae and Staphylococcus aureus.
    Pereira MP; Brown ED
    Biochemistry; 2004 Sep; 43(37):11802-12. PubMed ID: 15362865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction precedes cytidylyl transfer without substrate channeling in distinct active sites of the bifunctional CDP-ribitol synthase from Haemophilus influenzae.
    Zolli M; Kobric DJ; Brown ED
    Biochemistry; 2001 Apr; 40(16):5041-8. PubMed ID: 11305920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallographic analysis of TarI and TarJ, a cytidylyltransferase and reductase pair for CDP-ribitol synthesis in Staphylococcus aureus wall teichoic acid biogenesis.
    Li FKK; Gale RT; Petrotchenko EV; Borchers CH; Brown ED; Strynadka NCJ
    J Struct Biol; 2021 Jun; 213(2):107733. PubMed ID: 33819634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. acs1 of Haemophilus influenzae type a capsulation locus region II encodes a bifunctional ribulose 5-phosphate reductase- CDP-ribitol pyrophosphorylase.
    Follens A; Veiga-da-Cunha M; Merckx R; van Schaftingen E; van Eldere J
    J Bacteriol; 1999 Apr; 181(7):2001-7. PubMed ID: 10094675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CTP:glycerol 3-phosphate cytidylyltransferase (TarD) from Staphylococcus aureus catalyzes the cytidylyl transfer via an ordered Bi-Bi reaction mechanism with micromolar K(m) values.
    Badurina DS; Zolli-Juran M; Brown ED
    Biochim Biophys Acta; 2003 Mar; 1646(1-2):196-206. PubMed ID: 12637027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enoyl-ACP reductase (FabI) of Haemophilus influenzae: steady-state kinetic mechanism and inhibition by triclosan and hexachlorophene.
    Marcinkeviciene J; Jiang W; Kopcho LM; Locke G; Luo Y; Copeland RA
    Arch Biochem Biophys; 2001 Jun; 390(1):101-8. PubMed ID: 11368521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Duplication of teichoic acid biosynthetic genes in Staphylococcus aureus leads to functionally redundant poly(ribitol phosphate) polymerases.
    Pereira MP; D'Elia MA; Troczynska J; Brown ED
    J Bacteriol; 2008 Aug; 190(16):5642-9. PubMed ID: 18556787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of CDP-activated ribitol for teichoic acid precursors in Streptococcus pneumoniae.
    Baur S; Marles-Wright J; Buckenmaier S; Lewis RJ; Vollmer W
    J Bacteriol; 2009 Feb; 191(4):1200-10. PubMed ID: 19074383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic studies with 2-C-methyl-D-erythritol 4-phosphate synthase from Escherichia coli.
    Fox DT; Poulter CD
    Biochemistry; 2005 Jun; 44(23):8360-8. PubMed ID: 15938625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic studies of the biosynthesis of paratose: purification and characterization of CDP-paratose synthase.
    Hallis TM; Lei Y; Que NL; Liu H
    Biochemistry; 1998 Apr; 37(14):4935-45. PubMed ID: 9538012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The 1.9 A resolution structure of Mycobacterium tuberculosis 1-deoxy-D-xylulose 5-phosphate reductoisomerase, a potential drug target.
    Henriksson LM; Björkelid C; Mowbray SL; Unge T
    Acta Crystallogr D Biol Crystallogr; 2006 Jul; 62(Pt 7):807-13. PubMed ID: 16790937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of HI0073 from Haemophilus influenzae, the nucleotide-binding domain of a two-protein nucleotidyl transferase.
    Lehmann C; Pullalarevu S; Krajewski W; Willis MA; Galkin A; Howard A; Herzberg O
    Proteins; 2005 Sep; 60(4):807-11. PubMed ID: 16028221
    [No Abstract]   [Full Text] [Related]  

  • 13. Identification of alpha-D-glucose-1-phosphate cytidylyltransferase involved in Ebosin biosynthesis of Streptomyces sp. 139.
    Qi XQ; Sun QL; Bai LP; Shan JJ; Zhang Y; Zhang R; Li Y
    Appl Microbiol Biotechnol; 2009 May; 83(2):361-8. PubMed ID: 19330326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. D-Ribulose 5-phosphate 3-epimerase: functional and structural relationships to members of the ribulose-phosphate binding (beta/alpha)8-barrel superfamily.
    Akana J; Fedorov AA; Fedorov E; Novak WR; Babbitt PC; Almo SC; Gerlt JA
    Biochemistry; 2006 Feb; 45(8):2493-503. PubMed ID: 16489742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endogenous reductase activities for the generation of ribitol-phosphate, a CDP-ribitol precursor, in mammals.
    Hoshino S; Manya H; Imae R; Kobayashi K; Kanagawa M; Endo T
    J Biochem; 2024 Mar; 175(4):418-425. PubMed ID: 38140954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression, purification, crystallization and preliminary X-ray analysis of ribitol-5-phosphate cytidylyltransferase from Bacillus subtilis.
    Chen SC; Yang CS; Lin CT; Chan NL; Chang MC; Chen Y
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2012 Oct; 68(Pt 10):1195-7. PubMed ID: 23027746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global effects of the energetics of coenzyme binding: NADPH controls the protein interaction properties of human cytochrome P450 reductase.
    Grunau A; Paine MJ; Ladbury JE; Gutierrez A
    Biochemistry; 2006 Feb; 45(5):1421-34. PubMed ID: 16445284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of N-acetyl-gamma-glutamyl-phosphate reductase from Mycobacterium tuberculosis in complex with NADP(+).
    Cherney LT; Cherney MM; Garen CR; Niu C; Moradian F; James MN
    J Mol Biol; 2007 Apr; 367(5):1357-69. PubMed ID: 17316682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of 3-deoxy-manno-octulosonate cytidylyltransferase from Haemophilus influenzae complexed with the substrate 3-deoxy-manno-octulosonate in the beta-configuration.
    Yoon HJ; Ku MJ; Mikami B; Suh SW
    Acta Crystallogr D Biol Crystallogr; 2008 Dec; 64(Pt 12):1292-4. PubMed ID: 19018107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycerol-3-phosphate cytidylyltransferase. Structural changes induced by binding of CDP-glycerol and the role of lysine residues in catalysis.
    Pattridge KA; Weber CH; Friesen JA; Sanker S; Kent C; Ludwig ML
    J Biol Chem; 2003 Dec; 278(51):51863-71. PubMed ID: 14506262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.