BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 15362884)

  • 1. A three-dimensional flow control concept for single-cell experiments on a microchip. 2. Fluorescein diacetate metabolism and calcium mobilization in a single yeast cell as stimulated by glucose and pH changes.
    Peng XY; Li PC
    Anal Chem; 2004 Sep; 76(18):5282-92. PubMed ID: 15362884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of uptake and hydrolysis of fluorescein diacetate and carboxyfluorescein diacetate by intracellular esterases in Saccharomyces cerevisiae, which result in accumulation of fluorescent product.
    Breeuwer P; Drocourt JL; Bunschoten N; Zwietering MH; Rombouts FM; Abee T
    Appl Environ Microbiol; 1995 Apr; 61(4):1614-9. PubMed ID: 7747975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A three-dimensional flow control concept for single-cell experiments on a microchip. 1. Cell selection, cell retention, cell culture, cell balancing, and cell scanning.
    Peng XY; Li PC
    Anal Chem; 2004 Sep; 76(18):5273-81. PubMed ID: 15362883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport, retention and fluorescent measurement of single biological cells studied in microfluidic chips.
    Li PC; de Camprieu L; Cai J; Sangar M
    Lab Chip; 2004 Jun; 4(3):174-80. PubMed ID: 15159774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on calcium efflux in the yeast Saccharomyces cerevisiae.
    Eilam Y
    Microbios; 1982; 35(140):99-110. PubMed ID: 6761554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow cytometric analysis of membrane permeability properties influencing intracellular accumulation and efflux of fluorescein.
    Prosperi E; Croce AC; Bottiroli G; Supino R
    Cytometry; 1986 Jan; 7(1):70-5. PubMed ID: 3948603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanism of intracellular acidification induced by glucose in Saccharomyces cerevisiae.
    Ramos S; Balbín M; Raposo M; Valle E; Pardo LA
    J Gen Microbiol; 1989 Sep; 135(9):2413-22. PubMed ID: 2697747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient increase in Ca2+ influx in Saccharomyces cerevisiae in response to glucose: effects of intracellular acidification and cAMP levels.
    Eilam Y; Othman M; Halachmi D
    J Gen Microbiol; 1990 Dec; 136(12):2537-43. PubMed ID: 1964173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extraction of pure cellular fluorescence by cell scanning in a single-cell microchip.
    Peng XY; Li PC
    Lab Chip; 2005 Nov; 5(11):1298-302. PubMed ID: 16234955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The intracellular dissipation of cytosolic calcium following glucose re-addition to carbohydrate depleted Saccharomyces cerevisiae.
    Kellermayer R; Szigeti R; Kellermayer M; Miseta A
    FEBS Lett; 2004 Jul; 571(1-3):55-60. PubMed ID: 15280017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Release of Ca2+ and Mg2+ from yeast mitochondria is stimulated by increased ionic strength.
    Bradshaw PC; Pfeiffer DR
    BMC Biochem; 2006 Feb; 7():4. PubMed ID: 16460565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bilayer microfluidic chip for diffusion-controlled activation of yeast species.
    Kurth F; Schumann CA; Blank LM; Schmid A; Manz A; Dittrich PS
    J Chromatogr A; 2008 Oct; 1206(1):77-82. PubMed ID: 18701110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy-dependent, carrier-mediated extrusion of carboxyfluorescein from Saccharomyces cerevisiae allows rapid assessment of cell viability by flow cytometry.
    Breeuwer P; Drocourt JL; Rombouts FM; Abee T
    Appl Environ Microbiol; 1994 May; 60(5):1467-72. PubMed ID: 8017931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gentle cell trapping and release on a microfluidic chip by in situ alginate hydrogel formation.
    Braschler T; Johann R; Heule M; Metref L; Renaud P
    Lab Chip; 2005 May; 5(5):553-9. PubMed ID: 15856094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active extrusion of potassium in the yeast Saccharomyces cerevisiae induced by low concentrations of trifluoperazine.
    Eilam Y; Lavi H; Grossowicz N
    J Gen Microbiol; 1985 Oct; 131(10):2555-64. PubMed ID: 3906026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic array cytometer based on refractive optical tweezers for parallel trapping, imaging and sorting of individual cells.
    Werner M; Merenda F; Piguet J; Salathé RP; Vogel H
    Lab Chip; 2011 Jul; 11(14):2432-9. PubMed ID: 21655617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time measurement of the intracellular pH of yeast cells during glucose metabolism using ratiometric fluorescent nanosensors.
    Elsutohy MM; Chauhan VM; Markus R; Kyyaly MA; Tendler SJB; Aylott JW
    Nanoscale; 2017 May; 9(18):5904-5911. PubMed ID: 28436517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular pH distribution and transmembrane pH profile of yeast cells.
    Slavík J; Kotyk A
    Biochim Biophys Acta; 1984 Sep; 766(3):679-84. PubMed ID: 6089881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noninvasive acoustic cell trapping in a microfluidic perfusion system for online bioassays.
    Evander M; Johansson L; Lilliehorn T; Piskur J; Lindvall M; Johansson S; Almqvist M; Laurell T; Nilsson J
    Anal Chem; 2007 Apr; 79(7):2984-91. PubMed ID: 17313183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon source-dependent regulation of cell growth by murine protein kinase C epsilon expression in Saccharomyces cerevisiae.
    Parissenti AM; Villeneuve D; Kirwan-Rhude A; Busch D
    J Cell Physiol; 1999 Feb; 178(2):216-26. PubMed ID: 10048586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.