BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 15362945)

  • 1. Simultaneous production of superoxide radical and singlet oxygen by sulphonated chloroaluminum phthalocyanine incorporated in human low-density lipoproteins: implications for photodynamic therapy.
    Martins J; Almeida L; Laranjinha J
    Photochem Photobiol; 2004; 80(2):267-73. PubMed ID: 15362945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron spin resonance evidence of the generation of superoxide anion, hydroxyl radical and singlet oxygen during the photohemolysis of human erythrocytes with bacteriochlorin a.
    Hoebeke M; Schuitmaker HJ; Jannink LE; Dubbelman TM; Jakobs A; Van de Vorst A
    Photochem Photobiol; 1997 Oct; 66(4):502-8. PubMed ID: 9337622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of the free radicals O2.- and .OH by irradiation of the photosensitizer zinc(II) phthalocyanine.
    Hadjur C; Wagnières G; Ihringer F; Monnier P; van den Bergh H
    J Photochem Photobiol B; 1997 Apr; 38(2-3):196-202. PubMed ID: 9203381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of superoxide dismutase mimics on radical adduct formation during the reaction between peroxynitrite and thiols--an ESR-spin trapping study.
    Karoui H; Hogg N; Joseph J; Kalyanaraman B
    Arch Biochem Biophys; 1996 Jun; 330(1):115-24. PubMed ID: 8651684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skeletal sarcoplasmic reticulum dysfunction induced by reactive oxygen intermediates derived from photoactivated rose bengal.
    Ishibashi T; Lee CI; Okabe E
    J Pharmacol Exp Ther; 1996 Apr; 277(1):350-8. PubMed ID: 8613941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spin trap studies on the decomposition of peroxynitrite.
    Lemercier JN; Squadrito GL; Pryor WA
    Arch Biochem Biophys; 1995 Aug; 321(1):31-9. PubMed ID: 7639532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA strand scission and base release photosensitized by metallo-phthalocyanines.
    Gantchev TG; Gowans BJ; Hunting DJ; Wagner JR; van Lier JE
    Int J Radiat Biol; 1994 Dec; 66(6):705-16. PubMed ID: 7814970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfonated chloroaluminum phthalocyanine incorporates into human plasma lipoproteins: photooxidation of low-density lipoproteins.
    Santos AE; Laranjinha JA; Almeida LM
    Photochem Photobiol; 1998 Apr; 67(4):378-85. PubMed ID: 9559581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ESR studies of a series of phthalocyanines. Mechanism of phototoxicity. Comparative quantitation of O2-. using ESR spin-trapping and cytochrome c reduction techniques.
    Viola A; Jeunet A; Decreau R; Chanon M; Julliard M
    Free Radic Res; 1998 May; 28(5):517-32. PubMed ID: 9702532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition by singlet molecular oxygen of the vascular reactivity in rabbit mesenteric artery.
    Mizukawa H; Okabe E
    Br J Pharmacol; 1997 May; 121(1):63-70. PubMed ID: 9146888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for superoxide radical production in peroxynitrite decomposition.
    Zang LY; Shi X
    Biochem Mol Biol Int; 1995 Oct; 37(2):355-60. PubMed ID: 8673019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photosensitized formation of ascorbate radicals by chloroaluminum phthalocyanine tetrasulfonate: an electron spin resonance study.
    Kim H; Rosenthal I; Kirschenbaum LJ; Riesz P
    Free Radic Biol Med; 1992 Sep; 13(3):231-8. PubMed ID: 1324204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Dynamic phototherapy: study of anti-tumour potentialities of bis (tri n-hexylsiloxy) silicon phthalocyanine on malignant achromic M6 melanocytes. EPR study of phototoxic mechanism].
    Decréau R; Viola A; Hadjur C; Richard MJ; Jeunet A; Favier A; Julliard M
    C R Seances Soc Biol Fil; 1997; 191(4):639-57. PubMed ID: 9404465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of hydroxyl free radical by exposure of N-methyl-N'-nitro-N-nitrosoguanidine to visible light in the absence of hydrogen peroxide.
    Mikuni T; Tatsuta M
    Radiat Res; 1994 Jun; 138(3):320-5. PubMed ID: 8184005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of hydroxyl radicals upon interaction of ozone with aqueous media or extracellular surfactant: the role of trace iron.
    Byvoet P; Balis JU; Shelley SA; Montgomery MR; Barber MJ
    Arch Biochem Biophys; 1995 Jun; 319(2):464-9. PubMed ID: 7786029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of hydroxyl radical from lipid hydroperoxides contained in oxidatively modified low-density lipoprotein.
    Yagi K; Komura S; Ishida N; Nagata N; Kohno M; Ohishi N
    Biochem Biophys Res Commun; 1993 Jan; 190(2):386-90. PubMed ID: 8381274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spin-trapping of free radicals during phthalocyanine photosensitization of lymphoma cells in vitro.
    Gantchev TG
    Cancer Biochem Biophys; 1992 Nov; 13(2):103-11. PubMed ID: 1343848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of superoxide from hemoglobin-bound oxygen under hypoxic conditions.
    Balagopalakrishna C; Manoharan PT; Abugo OO; Rifkind JM
    Biochemistry; 1996 May; 35(20):6393-8. PubMed ID: 8639585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative measurement of superoxide generation using the spin trap 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide.
    Roubaud V; Sankarapandi S; Kuppusamy P; Tordo P; Zweier JL
    Anal Biochem; 1997 May; 247(2):404-11. PubMed ID: 9177705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photochemical generation of superoxide radical and the cytotoxicity of phthalocyanines.
    Ben-Hur E; Carmichael A; Riesz P; Rosenthal I
    Int J Radiat Biol Relat Stud Phys Chem Med; 1985 Nov; 48(5):837-46. PubMed ID: 2997064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.