BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 15363173)

  • 1. Human mesenchymal progenitor cell-based tissue engineering of a single-unit osteochondral construct.
    Tuli R; Nandi S; Li WJ; Tuli S; Huang X; Manner PA; Laquerriere P; Nöth U; Hall DJ; Tuan RS
    Tissue Eng; 2004; 10(7-8):1169-79. PubMed ID: 15363173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiphasic collagen fibre-PLA composites seeded with human mesenchymal stem cells for osteochondral defect repair: an in vitro study.
    Heymer A; Bradica G; Eulert J; Nöth U
    J Tissue Eng Regen Med; 2009 Jul; 3(5):389-97. PubMed ID: 19434664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly-L-lactic acid/hydroxyapatite electrospun nanocomposites induce chondrogenic differentiation of human MSC.
    Spadaccio C; Rainer A; Trombetta M; Vadalá G; Chello M; Covino E; Denaro V; Toyoda Y; Genovese JA
    Ann Biomed Eng; 2009 Jul; 37(7):1376-89. PubMed ID: 19418224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repair of porcine articular osteochondral defects in non-weightbearing areas with autologous bone marrow stromal cells.
    Zhou G; Liu W; Cui L; Wang X; Liu T; Cao Y
    Tissue Eng; 2006 Nov; 12(11):3209-21. PubMed ID: 17518635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Reconstruction of osteochondral defects with a stem cell-based cartilage-polymer construct in a small animal model].
    Berner A; Siebenlist S; Reichert JC; Hendrich C; Nöth U
    Z Orthop Unfall; 2010 Jan; 148(1):31-8. PubMed ID: 20151353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue engineering of the synovial joint: the role of cell density.
    Troken A; Marion N; Hollister S; Mao J
    Proc Inst Mech Eng H; 2007 Jul; 221(5):429-40. PubMed ID: 17822145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineered osteochondral grafts using biphasic composite solid free-form fabricated scaffolds.
    Schek RM; Taboas JM; Segvich SJ; Hollister SJ; Krebsbach PH
    Tissue Eng; 2004; 10(9-10):1376-85. PubMed ID: 15588398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dependence of in vivo stable ectopic chondrogenesis by human mesenchymal stem cells on chondrogenic differentiation in vitro.
    Liu K; Zhou GD; Liu W; Zhang WJ; Cui L; Liu X; Liu TY; Cao Y
    Biomaterials; 2008 May; 29(14):2183-92. PubMed ID: 18289667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells.
    Wang Y; Kim UJ; Blasioli DJ; Kim HJ; Kaplan DL
    Biomaterials; 2005 Dec; 26(34):7082-94. PubMed ID: 15985292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue engineering of human cartilage and osteochondral composites using recirculation bioreactors.
    Mahmoudifar N; Doran PM
    Biomaterials; 2005 Dec; 26(34):7012-24. PubMed ID: 16039710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput bone and cartilage micropellet manufacture, followed by assembly of micropellets into biphasic osteochondral tissue.
    Babur BK; Futrega K; Lott WB; Klein TJ; Cooper-White J; Doran MR
    Cell Tissue Res; 2015 Sep; 361(3):755-68. PubMed ID: 25924853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The guidance of human mesenchymal stem cell differentiation in vitro by controlled modifications to the cell substrate.
    Curran JM; Chen R; Hunt JA
    Biomaterials; 2006 Sep; 27(27):4783-93. PubMed ID: 16735063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel biologically-inspired rosette nanotube PLLA scaffolds for improving human mesenchymal stem cell chondrogenic differentiation.
    Childs A; Hemraz UD; Castro NJ; Fenniri H; Zhang LG
    Biomed Mater; 2013 Dec; 8(6):065003. PubMed ID: 24225196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical interlocking of engineered cartilage to an underlying polymeric substrate: towards a biohybrid tissue equivalent.
    Romito L; Ameer GA
    Ann Biomed Eng; 2006 May; 34(5):737-47. PubMed ID: 16568348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A bioactive hybrid three-dimensional tissue-engineering construct for cartilage repair.
    Ainola M; Tomaszewski W; Ostrowska B; Wesolowska E; Wagner HD; Swieszkowski W; Sillat T; Peltola E; Konttinen YT
    J Biomater Appl; 2016 Jan; 30(6):873-85. PubMed ID: 26341661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of tissue-engineered cartilage from human auricular chondrocytes.
    Park SS; Jin HR; Chi DH; Taylor RS
    Biomaterials; 2004 May; 25(12):2363-9. PubMed ID: 14741601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(lactide-co-glycolide) microspheres as a moldable scaffold for cartilage tissue engineering.
    Mercier NR; Costantino HR; Tracy MA; Bonassar LJ
    Biomaterials; 2005 May; 26(14):1945-52. PubMed ID: 15576168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repair of porcine articular cartilage defect with a biphasic osteochondral composite.
    Jiang CC; Chiang H; Liao CJ; Lin YJ; Kuo TF; Shieh CS; Huang YY; Tuan RS
    J Orthop Res; 2007 Oct; 25(10):1277-90. PubMed ID: 17576624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue engineering of biphasic cartilage constructs using various biodegradable scaffolds: an in vitro study.
    Wang X; Grogan SP; Rieser F; Winkelmann V; Maquet V; Berge ML; Mainil-Varlet P
    Biomaterials; 2004 Aug; 25(17):3681-8. PubMed ID: 15020143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.