BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 15363407)

  • 21. The origins of developmental gene regulation.
    Arenas-Mena C
    Evol Dev; 2017 Mar; 19(2):96-107. PubMed ID: 28116828
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The origins of multicellular organisms.
    Niklas KJ; Newman SA
    Evol Dev; 2013 Jan; 15(1):41-52. PubMed ID: 23331916
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phosphotyrosine signalling and the origin of animal multicellularity.
    Tong K; Wang Y; Su Z
    Proc Biol Sci; 2017 Aug; 284(1860):. PubMed ID: 28768887
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The origins of multicellularity: a multi-taxon genome initiative.
    Ruiz-Trillo I; Burger G; Holland PW; King N; Lang BF; Roger AJ; Gray MW
    Trends Genet; 2007 Mar; 23(3):113-8. PubMed ID: 17275133
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Capsaspora owczarzaki.
    Ferrer-Bonet M; Ruiz-Trillo I
    Curr Biol; 2017 Sep; 27(17):R829-R830. PubMed ID: 28898640
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Choanoflagellate models - Monosiga brevicollis and Salpingoeca rosetta.
    Hoffmeyer TT; Burkhardt P
    Curr Opin Genet Dev; 2016 Aug; 39():42-47. PubMed ID: 27318693
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The origin of animals: an ancestral reconstruction of the unicellular-to-multicellular transition.
    Ros-Rocher N; Pérez-Posada A; Leger MM; Ruiz-Trillo I
    Open Biol; 2021 Feb; 11(2):200359. PubMed ID: 33622103
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insights into the origin of metazoan multicellularity from predatory unicellular relatives of animals.
    Tikhonenkov DV; Hehenberger E; Esaulov AS; Belyakova OI; Mazei YA; Mylnikov AP; Keeling PJ
    BMC Biol; 2020 Apr; 18(1):39. PubMed ID: 32272915
    [TBL] [Abstract][Full Text] [Related]  

  • 29. FGF signaling emerged concomitantly with the origin of Eumetazoans.
    Bertrand S; Iwema T; Escriva H
    Mol Biol Evol; 2014 Feb; 31(2):310-8. PubMed ID: 24222650
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional development of Src tyrosine kinases during evolution from a unicellular ancestor to multicellular animals.
    Segawa Y; Suga H; Iwabe N; Oneyama C; Akagi T; Miyata T; Okada M
    Proc Natl Acad Sci U S A; 2006 Aug; 103(32):12021-6. PubMed ID: 16873552
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The evolution of multicellularity and early animal genomes.
    Brooke NM; Holland PW
    Curr Opin Genet Dev; 2003 Dec; 13(6):599-603. PubMed ID: 14638321
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Insights into the early evolution of animal calcium signaling machinery: a unicellular point of view.
    Cai X; Wang X; Patel S; Clapham DE
    Cell Calcium; 2015 Mar; 57(3):166-73. PubMed ID: 25498309
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The predicted secretomes of Monosiga brevicollis and Capsaspora owczarzaki, close unicellular relatives of metazoans, reveal new insights into the evolution of the metazoan extracellular matrix.
    Williams F; Tew HA; Paul CE; Adams JC
    Matrix Biol; 2014 Jul; 37():60-8. PubMed ID: 24561726
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Origin of animal multicellularity: precursors, causes, consequences-the choanoflagellate/sponge transition, neurogenesis and the Cambrian explosion.
    Cavalier-Smith T
    Philos Trans R Soc Lond B Biol Sci; 2017 Feb; 372(1713):. PubMed ID: 27994119
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reconstruction of protein domain evolution using single-cell amplified genomes of uncultured choanoflagellates sheds light on the origin of animals.
    López-Escardó D; Grau-Bové X; Guillaumet-Adkins A; Gut M; Sieracki ME; Ruiz-Trillo I
    Philos Trans R Soc Lond B Biol Sci; 2019 Nov; 374(1786):20190088. PubMed ID: 31587642
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Revision of the Capsaspora genome using read mating information adjusts the view on premetazoan genome.
    Denbo S; Aono K; Kai T; Yagasaki R; Ruiz-Trillo I; Suga H
    Dev Growth Differ; 2019 Jan; 61(1):34-42. PubMed ID: 30585312
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Origins, lineage-specific expansions, and multiple losses of tyrosine kinases in eukaryotes.
    Shiu SH; Li WH
    Mol Biol Evol; 2004 May; 21(5):828-40. PubMed ID: 14963097
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of ichthyosporeans sheds light on the origin of metazoan multicellularity.
    Suga H; Ruiz-Trillo I
    Dev Biol; 2013 May; 377(1):284-92. PubMed ID: 23333946
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Early evolution of metazoan transcription factors.
    Degnan BM; Vervoort M; Larroux C; Richards GS
    Curr Opin Genet Dev; 2009 Dec; 19(6):591-9. PubMed ID: 19880309
    [TBL] [Abstract][Full Text] [Related]  

  • 40. "Hypothesis for the modern RNA world": a pervasive non-coding RNA-based genetic regulation is a prerequisite for the emergence of multicellular complexity.
    Lozada-Chávez I; Stadler PF; Prohaska SJ
    Orig Life Evol Biosph; 2011 Dec; 41(6):587-607. PubMed ID: 22322874
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.