These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 15363649)

  • 1. Analysis of the force-sharing problem using an optimization model.
    Ait-Haddou R; Jinha A; Herzog W; Binding P
    Math Biosci; 2004 Oct; 191(2):111-22. PubMed ID: 15363649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictions of co-contraction depend critically on degrees-of-freedom in the musculoskeletal model.
    Jinha A; Ait-Haddou R; Herzog W
    J Biomech; 2006; 39(6):1145-52. PubMed ID: 16549102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Velocity-dependent cost function for the prediction of force sharing among synergistic muscles in a one degree of freedom model.
    Schappacher-Tilp G; Binding P; Braverman E; Herzog W
    J Biomech; 2009 Mar; 42(5):657-60. PubMed ID: 19232619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probabilistic modeling of knee muscle moment arms: effects of methods, origin-insertion, and kinematic variability.
    Pal S; Langenderfer JE; Stowe JQ; Laz PJ; Petrella AJ; Rullkoetter PJ
    Ann Biomed Eng; 2007 Sep; 35(9):1632-42. PubMed ID: 17546504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A task-specific validation of homogeneous non-linear optimisation approaches.
    Jinha A; Ait-Haddou R; Kaya M; Herzog W
    J Theor Biol; 2009 Aug; 259(4):695-700. PubMed ID: 19406130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model-based estimation of muscle forces exerted during movements.
    Erdemir A; McLean S; Herzog W; van den Bogert AJ
    Clin Biomech (Bristol, Avon); 2007 Feb; 22(2):131-54. PubMed ID: 17070969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Static optimization of muscle forces during gait in comparison to EMG-to-force processing approach.
    Heintz S; Gutierrez-Farewik EM
    Gait Posture; 2007 Jul; 26(2):279-88. PubMed ID: 17071088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis and simulation of mechanical loads on the human musculoskeletal system: a methodological overview.
    van den Bogert AJ
    Exerc Sport Sci Rev; 1994; 22():23-51. PubMed ID: 7925545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antagonistic activity of one-joint muscles in three-dimensions using non-linear optimisation.
    Jinha A; Ait-Haddou R; Binding P; Herzog W
    Math Biosci; 2006 Jul; 202(1):57-70. PubMed ID: 16697422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A global optimization method for prediction of muscle forces of human musculoskeletal system.
    Li G; Pierce JE; Herndon JH
    J Biomech; 2006; 39(3):522-9. PubMed ID: 16389092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle forces predicted using optimization methods are coordinate system dependent.
    Pierce JE; Li G
    J Biomech; 2005 Apr; 38(4):695-702. PubMed ID: 15713289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computation of a stabilizing set of feedback matrices of a large-scale nonlinear musculoskeletal dynamic model.
    Dhaher YY
    Comput Methods Biomech Biomed Engin; 2001 Feb; 4(2):165-87. PubMed ID: 11264866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity of kinematics-based model predictions to optimization criteria in static lifting tasks.
    Arjmand N; Shirazi-Adl A
    Med Eng Phys; 2006 Jul; 28(6):504-14. PubMed ID: 16288897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anatomy and biomechanics of the back muscles in the lumbar spine with reference to biomechanical modeling.
    Hansen L; de Zee M; Rasmussen J; Andersen TB; Wong C; Simonsen EB
    Spine (Phila Pa 1976); 2006 Aug; 31(17):1888-99. PubMed ID: 16924205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A neuromusculoskeletal tracking method for estimating individual muscle forces in human movement.
    Seth A; Pandy MG
    J Biomech; 2007; 40(2):356-66. PubMed ID: 16513124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of two-joint arm movements: a model technique or a result of natural selection?
    Secco EL; Valandro L; Caimmi R; Magenes G; Salvato B
    Biol Cybern; 2005 Oct; 93(4):288-306. PubMed ID: 16193305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A markerless motion capture system to study musculoskeletal biomechanics: visual hull and simulated annealing approach.
    Corazza S; Mündermann L; Chaudhari AM; Demattio T; Cobelli C; Andriacchi TP
    Ann Biomed Eng; 2006 Jun; 34(6):1019-29. PubMed ID: 16783657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using EMG data to constrain optimization procedure improves finger tendon tension estimations during static fingertip force production.
    Vigouroux L; Quaine F; Labarre-Vila A; Amarantini D; Moutet F
    J Biomech; 2007; 40(13):2846-56. PubMed ID: 17482624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic motion planning of 3D human locomotion using gradient-based optimization.
    Kim HJ; Wang Q; Rahmatalla S; Swan CC; Arora JS; Abdel-Malek K; Assouline JG
    J Biomech Eng; 2008 Jun; 130(3):031002. PubMed ID: 18532851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subject-specific hip geometry and hip joint centre location affects calculated contact forces at the hip during gait.
    Lenaerts G; Bartels W; Gelaude F; Mulier M; Spaepen A; Van der Perre G; Jonkers I
    J Biomech; 2009 Jun; 42(9):1246-51. PubMed ID: 19464012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.