These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 15363673)
1. Starting, stopping, and resetting biological oscillators: in search of optimum perturbations. Forger DB; Paydarfar D J Theor Biol; 2004 Oct; 230(4):521-32. PubMed ID: 15363673 [TBL] [Abstract][Full Text] [Related]
2. MEG responses during rhythmic finger tapping in humans to phasic stimulation and their interpretation based on neural mechanisms. Yoshino K; Takagi K; Nomura T; Sato S; Tonoike M Biol Cybern; 2002 Jun; 86(6):483-96. PubMed ID: 12111276 [TBL] [Abstract][Full Text] [Related]
3. Phase tracking and restoration of circadian rhythms by model-based optimal control. Shaik OS; Sager S; Slaby O; Lebiedz D IET Syst Biol; 2008 Jan; 2(1):16-23. PubMed ID: 18248082 [TBL] [Abstract][Full Text] [Related]
4. Transient resetting: a novel mechanism for synchrony and its biological examples. Li C; Chen L; Aihara K PLoS Comput Biol; 2006 Aug; 2(8):e103. PubMed ID: 16933980 [TBL] [Abstract][Full Text] [Related]
6. Mammalian circadian signaling networks and therapeutic targets. Liu AC; Lewis WG; Kay SA Nat Chem Biol; 2007 Oct; 3(10):630-9. PubMed ID: 17876320 [TBL] [Abstract][Full Text] [Related]
7. A GABAergic mechanism is necessary for coupling dissociable ventral and dorsal regional oscillators within the circadian clock. Albus H; Vansteensel MJ; Michel S; Block GD; Meijer JH Curr Biol; 2005 May; 15(10):886-93. PubMed ID: 15916945 [TBL] [Abstract][Full Text] [Related]
8. Computational modeling of synchronization process of the circadian timing system of mammals. Cardoso FR; de Oliveira Cruz FA; Silva D; Cortez CM Biol Cybern; 2009 May; 100(5):385-93. PubMed ID: 19367410 [TBL] [Abstract][Full Text] [Related]
9. A model for generating circadian rhythm by coupling ultradian oscillators. Paetkau V; Edwards R; Illner R Theor Biol Med Model; 2006 Feb; 3():12. PubMed ID: 16504091 [TBL] [Abstract][Full Text] [Related]
10. Differential effects of constant light on circadian clock resetting by photic and nonphotic stimuli in Syrian hamsters. Landry GJ; Mistlberger RE Brain Res; 2005 Oct; 1059(1):52-8. PubMed ID: 16169532 [TBL] [Abstract][Full Text] [Related]
11. The influence of limit cycle topology on the phase resetting curve. Oprisan SA; Canavier CC Neural Comput; 2002 May; 14(5):1027-57. PubMed ID: 11972906 [TBL] [Abstract][Full Text] [Related]
12. Light-induced suppression of endogenous circadian amplitude in humans. Jewett ME; Kronauer RE; Czeisler CA Nature; 1991 Mar; 350(6313):59-62. PubMed ID: 2002845 [TBL] [Abstract][Full Text] [Related]
13. Local linear approximation of the Jacobian matrix better captures phase resetting of neural limit cycle oscillators. Oprisan SA Neural Comput; 2014 Jan; 26(1):132-57. PubMed ID: 24102127 [TBL] [Abstract][Full Text] [Related]
15. Emergence of circadian and photoperiodic system level properties from interactions among pacemaker cells. Beersma DG; van Bunnik BA; Hut RA; Daan S J Biol Rhythms; 2008 Aug; 23(4):362-73. PubMed ID: 18663243 [TBL] [Abstract][Full Text] [Related]
17. Periodic dip of lipidperoxidation in humans: a redox signal to synchronize peripheral circadian clocks? Cardona F Med Hypotheses; 2004; 63(5):841-6. PubMed ID: 15488658 [TBL] [Abstract][Full Text] [Related]
18. Stochastic phase oscillators and circadian bioluminescence recordings. Rougemont J; Naef F Cold Spring Harb Symp Quant Biol; 2007; 72():405-11. PubMed ID: 18419298 [TBL] [Abstract][Full Text] [Related]