These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 15363858)
1. The molecular phylogeny of oysters based on a satellite DNA related to transposons. López-Flores I; de la Herrán R; Garrido-Ramos MA; Boudry P; Ruiz-Rejón C; Ruiz-Rejón M Gene; 2004 Sep; 339():181-8. PubMed ID: 15363858 [TBL] [Abstract][Full Text] [Related]
2. Evolution of ancient satellite DNAs in sturgeon genomes. Robles F; de la Herrán R; Ludwig A; Ruiz Rejón C; Ruiz Rejón M; Garrido-Ramos MA Gene; 2004 Aug; 338(1):133-42. PubMed ID: 15302414 [TBL] [Abstract][Full Text] [Related]
3. Discrimination between closely related Pacific oyster species (Crassostrea) via mitochondrial DNA sequences coding for large subunit rRNA. Banks MA; Hedgecock D; Waters C Mol Mar Biol Biotechnol; 1993 Jun; 2(3):129-36. PubMed ID: 8103411 [TBL] [Abstract][Full Text] [Related]
4. Molecular phylogenetics of cupped oysters based on partial 28S rRNA gene sequences. Littlewood DT Mol Phylogenet Evol; 1994 Sep; 3(3):221-9. PubMed ID: 7820286 [TBL] [Abstract][Full Text] [Related]
5. Isolation and characterization of salmonid telomeric and centromeric satellite DNA sequences. Saito Y; Edpalina RR; Abe S Genetica; 2007 Oct; 131(2):157-66. PubMed ID: 17180439 [TBL] [Abstract][Full Text] [Related]
6. Cloning of cDNAs and hybridization analysis of lysozymes from two oyster species, Crassostrea gigas and Ostrea edulis. Matsumoto T; Nakamura AM; Takahashi KG Comp Biochem Physiol B Biochem Mol Biol; 2006; 145(3-4):325-30. PubMed ID: 16996284 [TBL] [Abstract][Full Text] [Related]
7. Evolutionary dynamics of satellite DNA in species of the Genus Formica (Hymenoptera, Formicidae). Lorite P; Carrillo JA; Tinaut A; Palomeque T Gene; 2004 May; 332():159-68. PubMed ID: 15145065 [TBL] [Abstract][Full Text] [Related]
8. The centromeric satellite of the wedge sole (Dicologoglossa cuneata, Pleuronectiformes) is composed mainly of a sequence motif conserved in other vertebrate centromeric DNAs. de la Herrán R; Robles F; Navas JI; López-Flores I; Herrera M; Hachero I; Garrido-Ramos MA; Ruiz Rejón C; Ruiz Rejón M Cytogenet Genome Res; 2008; 121(3-4):271-6. PubMed ID: 18758170 [TBL] [Abstract][Full Text] [Related]
9. Trans-atlantic distribution of a mangrove oyster species revealed by 16S mtDNA and karyological analyses. Lapègue S; Boutet I; Leitão A; Heurtebise S; Garcia P; Thiriot-Quiévreux C; Boudry P Biol Bull; 2002 Jun; 202(3):232-42. PubMed ID: 12086994 [TBL] [Abstract][Full Text] [Related]
10. Sequencing and expression pattern of inducible heat shock gene products in the European flat oyster, Ostrea edulis. Piano A; Franzellitti S; Tinti F; Fabbri E Gene; 2005 Nov; 361():119-26. PubMed ID: 16185825 [TBL] [Abstract][Full Text] [Related]
11. Evolution of centromeric satellite DNA and its use in phylogenetic studies of the Sparidae family (Pisces, Perciformes). Garrido-Ramos MA; de la Herrán R; Jamilena M; Lozano R; Ruiz Rejón C; Ruiz Rejón M Mol Phylogenet Evol; 1999 Jul; 12(2):200-4. PubMed ID: 10381322 [TBL] [Abstract][Full Text] [Related]
12. Molecular characterization and evolution of an interspersed repetitive DNA family of oysters. López-Flores I; Ruiz-Rejón C; Cross I; Rebordinos L; Robles F; Navajas-Pérez R; de la Herrán R Genetica; 2010 Dec; 138(11-12):1211-9. PubMed ID: 21072565 [TBL] [Abstract][Full Text] [Related]
13. The utility of SATA satellite DNA sequences for inferring phylogenetic relationships among the three major genera of tilapiine cichlid fishes. Franck JP; Kornfield I; Wright JM Mol Phylogenet Evol; 1994 Mar; 3(1):10-6. PubMed ID: 7545936 [TBL] [Abstract][Full Text] [Related]
14. Direct sequencing of genomic DNA for characterization of a satellite DNA in five species of eastern Pacific abalone. Muchmore ME; Moy GW; Swanson WJ; Vacquier VD Mol Mar Biol Biotechnol; 1998 Mar; 7(1):1-6. PubMed ID: 9597772 [TBL] [Abstract][Full Text] [Related]
15. [Electrophoretic study of gene-enzyme systems in oysters classified as Crassostrea gigas (Thunberg, 1793) and Crassostrea angulata (Lamarck, 1819) (Mollusca: Ostreidae)]. Mattiucci S; Villani F Parassitologia; 1983 Apr; 25(1):21-7. PubMed ID: 6543934 [TBL] [Abstract][Full Text] [Related]
16. Enzymatic activities in European flat oyster, Ostrea edulis, and pacific oyster, Crassostrea gigas, hemolymph. Xue Q; Renault T J Invertebr Pathol; 2000 Oct; 76(3):155-63. PubMed ID: 11023742 [TBL] [Abstract][Full Text] [Related]
17. Intra-specific variability and unusual organization of the repetitive units in a satellite DNA from Rana dalmatina: molecular evidence of a new mechanism of DNA repair acting on satellite DNA. Feliciello I; Picariello O; Chinali G Gene; 2006 Nov; 383():81-92. PubMed ID: 16956734 [TBL] [Abstract][Full Text] [Related]
18. High conservation of the differentially amplified MPA2 satellite DNA family in parthenogenetic root-knot nematodes. Mestrović N; Castagnone-Sereno P; Plohl M Gene; 2006 Jul; 376(2):260-7. PubMed ID: 16765538 [TBL] [Abstract][Full Text] [Related]
19. A clade of New World primates with distinctive alphoid satellite DNAs. Alves G; Seuánez HN; Fanning T Mol Phylogenet Evol; 1998 Apr; 9(2):220-4. PubMed ID: 9562981 [TBL] [Abstract][Full Text] [Related]
20. Characterization of the satellite DNA Msat-160 from the species Chionomys nivalis (Rodentia, Arvicolinae). Acosta MJ; Marchal JA; Martínez S; Puerma E; Bullejos M; la de Guardia RD; Sánchez A Genetica; 2007 May; 130(1):43-51. PubMed ID: 16897458 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]