BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 15363931)

  • 1. Cooperativity of the oxidization of cysteines in globular proteins.
    Jiang-Ning S; Wei-Jiang L; Wen-Bo X
    J Theor Biol; 2004 Nov; 231(1):85-95. PubMed ID: 15363931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of the disulfide-bonding state of cysteines in proteins based on dipeptide composition.
    Song JN; Wang ML; Li WJ; Xu WB
    Biochem Biophys Res Commun; 2004 May; 318(1):142-7. PubMed ID: 15110765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying cysteines and histidines in transition-metal-binding sites using support vector machines and neural networks.
    Passerini A; Punta M; Ceroni A; Rost B; Frasconi P
    Proteins; 2006 Nov; 65(2):305-16. PubMed ID: 16927295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of the bonding states of cysteines using the support vector machines based on multiple feature vectors and cysteine state sequences.
    Chen YC; Lin YS; Lin CJ; Hwang JK
    Proteins; 2004 Jun; 55(4):1036-42. PubMed ID: 15146500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring synonymous codon usage preferences of disulfide-bonded and non-disulfide bonded cysteines in the E. coli genome.
    Song J; Wang M; Burrage K
    J Theor Biol; 2006 Jul; 241(2):390-401. PubMed ID: 16427089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disulfide connectivity prediction with 70% accuracy using two-level models.
    Chen BJ; Tsai CH; Chan CH; Kao CY
    Proteins; 2006 Jul; 64(1):246-52. PubMed ID: 16615141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simplified approach to disulfide connectivity prediction from protein sequences.
    Vincent M; Passerini A; Labbé M; Frasconi P
    BMC Bioinformatics; 2008 Jan; 9():20. PubMed ID: 18194539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cysteine separations profiles on protein sequences infer disulfide connectivity.
    Zhao E; Liu HL; Tsai CH; Tsai HK; Chan CH; Kao CY
    Bioinformatics; 2005 Apr; 21(8):1415-20. PubMed ID: 15585533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting the state of cysteines based on sequence information.
    Guang X; Guo Y; Xiao J; Wang X; Sun J; Xiong W; Li M
    J Theor Biol; 2010 Dec; 267(3):312-8. PubMed ID: 20826168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting disulfide connectivity from protein sequence using multiple sequence feature vectors and secondary structure.
    Song J; Yuan Z; Tan H; Huber T; Burrage K
    Bioinformatics; 2007 Dec; 23(23):3147-54. PubMed ID: 17942444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disulfide connectivity prediction based on structural information without a prior knowledge of the bonding state of cysteines.
    Lin HH; Hsu JC; Hsu YN; Pan RH; Chen YF; Tseng LY
    Comput Biol Med; 2013 Nov; 43(11):1941-8. PubMed ID: 24209939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of disulfide connectivity from protein sequences.
    Chen YC; Hwang JK
    Proteins; 2005 Nov; 61(3):507-12. PubMed ID: 16170781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the accuracy of predicting disulfide connectivity by feature selection.
    Zhu L; Yang J; Song JN; Chou KC; Shen HB
    J Comput Chem; 2010 May; 31(7):1478-85. PubMed ID: 20127740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox regulation of SH2-domain-containing protein tyrosine phosphatases by two backdoor cysteines.
    Chen CY; Willard D; Rudolph J
    Biochemistry; 2009 Feb; 48(6):1399-409. PubMed ID: 19166311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What can disulfide bonds tell us about protein energetics, function and folding: simulations and bioninformatics analysis.
    Abkevich VI; Shakhnovich EI
    J Mol Biol; 2000 Jul; 300(4):975-85. PubMed ID: 10891282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disulfide formation and stability of a cysteine-rich repeat protein from Helicobacter pylori.
    Devi VS; Sprecher CB; Hunziker P; Mittl PR; Bosshard HR; Jelesarov I
    Biochemistry; 2006 Feb; 45(6):1599-607. PubMed ID: 16460007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting disulfide connectivity patterns.
    Lu CH; Chen YC; Yu CS; Hwang JK
    Proteins; 2007 May; 67(2):262-70. PubMed ID: 17285623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving disulfide connectivity prediction with sequential distance between oxidized cysteines.
    Tsai CH; Chen BJ; Chan CH; Liu HL; Kao CY
    Bioinformatics; 2005 Dec; 21(24):4416-9. PubMed ID: 16223789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The disulfide bridge in the head domain of rhodobacter sphaeroides cytochrome c1 is needed to maintain its structural integrity.
    Elberry M; Yu L; Yu CA
    Biochemistry; 2006 Apr; 45(15):4991-7. PubMed ID: 16605267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A periplasmic reducing system protects single cysteine residues from oxidation.
    Depuydt M; Leonard SE; Vertommen D; Denoncin K; Morsomme P; Wahni K; Messens J; Carroll KS; Collet JF
    Science; 2009 Nov; 326(5956):1109-11. PubMed ID: 19965429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.