These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 15363934)

  • 1. Modeling the invasion of recessive Bt-resistant insects: an impact on transgenic plants.
    Medvinsky AB; Morozov AY; Velkov VV; Li BL; Sokolov MS; Malchow H
    J Theor Biol; 2004 Nov; 231(1):121-7. PubMed ID: 15363934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Invasion of pests resistant to Bt toxins can lead to inherent non-uniqueness in genetically modified Bt-plant dynamics: mathematical modeling.
    Medvinsky AB; Gonik MM; Li BL; Velkov VV; Malchow H
    J Theor Biol; 2006 Oct; 242(3):539-46. PubMed ID: 16757001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How to cope with insect resistance to Bt toxins?
    Bravo A; Soberón M
    Trends Biotechnol; 2008 Oct; 26(10):573-9. PubMed ID: 18706722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insect resistance management in GM crops: past, present and future.
    Bates SL; Zhao JZ; Roush RT; Shelton AM
    Nat Biotechnol; 2005 Jan; 23(1):57-62. PubMed ID: 15637622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "Active" refuges can inhibit the evolution of resistance in insects towards transgenic insect-resistant plants.
    Pittendrigh BR; Gaffney PJ; Huesing JE; Onstad DW; Roush RT; Murdock LL
    J Theor Biol; 2004 Dec; 231(4):461-74. PubMed ID: 15488524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Research of the Bt crop biomass dynamics upon the invasion of Bt-resistant pests. A mathematical model].
    Rusakov AV; Medvinskiĭ AB; Li B-; Gonik MM
    Biofizika; 2009; 54(4):733-41. PubMed ID: 19795797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant fitness assessment for wild relatives of insect resistant crops.
    Letourneau DK; Hagen JA
    Environ Biosafety Res; 2009; 8(1):45-55. PubMed ID: 19419653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing the refuge strategy for managing the evolution of insect resistance under different reproductive strategies.
    Crowder DW; Carrière Y
    J Theor Biol; 2009 Dec; 261(3):423-30. PubMed ID: 19703471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of plants genetically modified for insect resistance on nontarget organisms.
    O'Callaghan M; Glare TR; Burgess EP; Malone LA
    Annu Rev Entomol; 2005; 50():271-92. PubMed ID: 15355241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The impact of the high dose-refuge strategy on the Bt-crop yield. Mathematical simulations].
    Rusakov AV; Medvinskiĭ AB; Li BL; Gonik MM
    Biofizika; 2011; 56(1):113-21. PubMed ID: 21442892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insect resistance to Bt crops: evidence versus theory.
    Tabashnik BE; Gassmann AJ; Crowder DW; Carriére Y
    Nat Biotechnol; 2008 Feb; 26(2):199-202. PubMed ID: 18259177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary trade-offs of insect resistance to Bacillus thuringiensis crops: fitness cost affecting paternity.
    Higginson DM; Morin S; Nyboer ME; Biggs RW; Tabashnik BE; Carrière Y
    Evolution; 2005 Apr; 59(4):915-20. PubMed ID: 15926701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fitness costs of insect resistance to Bacillus thuringiensis.
    Gassmann AJ; Carrière Y; Tabashnik BE
    Annu Rev Entomol; 2009; 54():147-63. PubMed ID: 19067630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The compatibility of a nucleopolyhedrosis virus control with resistance management for Bacillus thuringiensis: co-infection and cross-resistance studies with the diamondback moth, Plutella xylostella.
    Raymond B; Sayyed AH; Wright DJ
    J Invertebr Pathol; 2006 Oct; 93(2):114-20. PubMed ID: 16905146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA-based detection of Bt resistance alleles in pink bollworm.
    Morin S; Henderson S; Fabrick JA; Carrière Y; Dennehy TJ; Brown JK; Tabashnik BE
    Insect Biochem Mol Biol; 2004 Nov; 34(11):1225-33. PubMed ID: 15522618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A global approach to resistance monitoring.
    Sivasupramaniam S; Head GP; English L; Li YJ; Vaughn TT
    J Invertebr Pathol; 2007 Jul; 95(3):224-6. PubMed ID: 17467005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Helicoverpa armigera baseline susceptibility to Bacillus thuringiensis Cry toxins and resistance management for Bt cotton in India.
    Gujar GT; Kalia V; Kumari A; Singh BP; Mittal A; Nair R; Mohan M
    J Invertebr Pathol; 2007 Jul; 95(3):214-9. PubMed ID: 17475275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring Bacillus thuringiensis-susceptibility in insect pests that occur in large geographies: how to get the best information when two countries are involved.
    Blanco CA; Perera OP; Boykin D; Abel C; Gore J; Matten SR; Ramírez-Sagahon JC; Terán-Vargas AP
    J Invertebr Pathol; 2007 Jul; 95(3):201-7. PubMed ID: 17499760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deterministic modeling of negative cross-resistance strategies for use in transgenic host-plant resistance.
    Pittendrigh BR; Gaffney P; Murdock LL
    J Theor Biol; 2000 May; 204(1):135-50. PubMed ID: 10772853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of transgenic Bt maize residues on the mycotoxigenic plant pathogen Fusarium graminearum and the biocontrol agent Trichoderma atroviride.
    Naef A; Zesiger T; Défago G
    J Environ Qual; 2006; 35(4):1001-9. PubMed ID: 16738384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.