BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 15364474)

  • 1. Tannase activity by lactic acid bacteria isolated from grape must and wine.
    Vaquero I; Marcobal A; Muñoz R
    Int J Food Microbiol; 2004 Nov; 96(2):199-204. PubMed ID: 15364474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of tannase activity in cell-free extracts of Lactobacillus plantarum CECT 748T.
    Rodríguez H; de las Rivas B; Gómez-Cordovés C; Muñoz R
    Int J Food Microbiol; 2008 Jan; 121(1):92-8. PubMed ID: 18054106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of lactic acid bacteria isolated from South African brandy base wines.
    du Plessis HW; Dicks LM; Pretorius IS; Lambrechts MG; du Toit M
    Int J Food Microbiol; 2004 Feb; 91(1):19-29. PubMed ID: 14967557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lactic acid bacteria associated with wine grapes from several Australian vineyards.
    Bae S; Fleet GH; Heard GM
    J Appl Microbiol; 2006 Apr; 100(4):712-27. PubMed ID: 16553726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic screening of lactic acid bacteria of oenological origin for bacteriocin-encoding genes.
    Knoll C; Divol B; du Toit M
    Food Microbiol; 2008 Dec; 25(8):983-91. PubMed ID: 18954734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A beta-glucosidase gene isolated from wine Lactobacillus plantarum is regulated by abiotic stresses.
    Spano G; Rinaldi A; Ugliano M; Moio L; Beneduce L; Massa S
    J Appl Microbiol; 2005; 98(4):855-61. PubMed ID: 15752331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular characterization of lactic acid populations associated with wine spoilage.
    Beneduce L; Spano G; Vernile A; Tarantino D; Massa S
    J Basic Microbiol; 2004; 44(1):10-6. PubMed ID: 14768022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation and biochemical properties of predominant lactic acid bacteria from fermenting cassava for selection as starter cultures.
    Kostinek M; Specht I; Edward VA; Pinto C; Egounlety M; Sossa C; Mbugua S; Dortu C; Thonart P; Taljaard L; Mengu M; Franz CM; Holzapfel WH
    Int J Food Microbiol; 2007 Mar; 114(3):342-51. PubMed ID: 17188771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wine volatile and amino acid composition after malolactic fermentation: effect of Oenococcus oeni and Lactobacillus plantarum starter cultures.
    Pozo-Bayón MA; G-Alegría E; Polo MC; Tenorio C; Martín-Alvarez PJ; Calvo de la Banda MT; Ruiz-Larrea F; Moreno-Arribas MV
    J Agric Food Chem; 2005 Nov; 53(22):8729-35. PubMed ID: 16248578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic diversity of the pln locus among oenological Lactobacillus plantarum strains.
    Sáenz Y; Rojo-Bezares B; Navarro L; Díez L; Somalo S; Zarazaga M; Ruiz-Larrea F; Torres C
    Int J Food Microbiol; 2009 Sep; 134(3):176-83. PubMed ID: 19604592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Which lactic acid bacteria are responsible for histamine production in wine?
    Landete JM; Ferrer S; Pardo I
    J Appl Microbiol; 2005; 99(3):580-6. PubMed ID: 16108800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of antibiotic susceptibility within lactic acid bacteria strains isolated from wine.
    Rojo-Bezares B; Sáenz Y; Poeta P; Zarazaga M; Ruiz-Larrea F; Torres C
    Int J Food Microbiol; 2006 Oct; 111(3):234-40. PubMed ID: 16876896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inventory and monitoring of wine microbial consortia.
    Renouf V; Claisse O; Lonvaud-Funel A
    Appl Microbiol Biotechnol; 2007 May; 75(1):149-64. PubMed ID: 17235561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of lactic acid bacteria from musts and wines of three consecutive vintages of Ribeira Sacra.
    Mesas JM; Rodríguez MC; Alegre MT
    Lett Appl Microbiol; 2011 Mar; 52(3):258-68. PubMed ID: 21204877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystallographic and mutational analyses of tannase from Lactobacillus plantarum.
    Matoba Y; Tanaka N; Noda M; Higashikawa F; Kumagai T; Sugiyama M
    Proteins; 2013 Nov; 81(11):2052-8. PubMed ID: 23836494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of tannic acid on Lactobacillus plantarum wine strain during starvation: A proteomic study.
    Cecconi D; Cristofoletti M; Milli A; Antonioli P; Rinalducci S; Zolla L; Zapparoli G
    Electrophoresis; 2009 Mar; 30(6):957-65. PubMed ID: 19229842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential Gene Expression by Lactobacillus plantarum WCFS1 in Response to Phenolic Compounds Reveals New Genes Involved in Tannin Degradation.
    Reverón I; Jiménez N; Curiel JA; Peñas E; López de Felipe F; de Las Rivas B; Muñoz R
    Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28115379
    [No Abstract]   [Full Text] [Related]  

  • 18. Screening of lactic acid bacteria from fermented vegetables by carbohydrate profiling and PCR-ELISA.
    Tamminen M; Joutsjoki T; Sjöblom M; Joutsen M; Palva A; Ryhänen EL; Joutsjoki V
    Lett Appl Microbiol; 2004; 39(5):439-44. PubMed ID: 15482435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tannin degradation by a novel tannase enzyme present in some Lactobacillus plantarum strains.
    Jiménez N; Esteban-Torres M; Mancheño JM; de Las Rivas B; Muñoz R
    Appl Environ Microbiol; 2014 May; 80(10):2991-7. PubMed ID: 24610854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrolysis of tannic acid catalyzed by immobilized-stabilized derivatives of Tannase from Lactobacillus plantarum.
    Curiel JA; Betancor L; de las Rivas B; Muñoz R; Guisan JM; Fernández-Lorente G
    J Agric Food Chem; 2010 May; 58(10):6403-9. PubMed ID: 20438129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.