These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 15364515)

  • 1. Biofilm quantification on stone surfaces: comparison of various methods.
    Prieto B; Silva B; Lantes O
    Sci Total Environ; 2004 Oct; 333(1-3):1-7. PubMed ID: 15364515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring biofilm formation and activity in drinking water distribution networks under oligotrophic conditions.
    Boe-Hansen R; Martiny AC; Arvin E; Albrechtsen HJ
    Water Sci Technol; 2003; 47(5):91-7. PubMed ID: 12701912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical method for long-term and large-scale monitoring of spatial biofilm development.
    Milferstedt K; Pons MN; Morgenroth E
    Biotechnol Bioeng; 2006 Jul; 94(4):773-82. PubMed ID: 16477662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial deterioration of stone monuments--an updated overview.
    Scheerer S; Ortega-Morales O; Gaylarde C
    Adv Appl Microbiol; 2009; 66():97-139. PubMed ID: 19203650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of algal biofilms colonising building materials: chlorophyll a measured by PAM-fluorometry as a biomass parameter.
    Eggert A; Häubner N; Klausch S; Karsten U; Schumann R
    Biofouling; 2006; 22(1-2):79-90. PubMed ID: 16581672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between color and pigment production in two stone biofilm-forming cyanobacteria (Nostoc sp. PCC 9104 and Nostoc sp. PCC 9025).
    Sanmartín P; Aira N; Devesa-Rey R; Silva B; Prieto B
    Biofouling; 2010 Jul; 26(5):499-509. PubMed ID: 20425659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. UVB-induced reduction in biomass and overall productivity of cyanobacteria.
    Babu GS; Joshi PC; Viswanathan PN
    Biochem Biophys Res Commun; 1998 Mar; 244(1):138-42. PubMed ID: 9514891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple system for biofilm potential monitoring in drinking water.
    Delahaye E; Levi Y; Leblon G; Montiel A
    J Basic Microbiol; 2006; 46(1):22-7. PubMed ID: 16463314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of analytical methods for determining the distribution of biofilm and active bacteria in a commercial heating system.
    Kjellerup BV; Gudmonsson G; Sowers K; Nielsen PH
    Biofouling; 2006; 22(3-4):145-51. PubMed ID: 17290859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reproducing stone monument photosynthetic-based colonization under laboratory conditions.
    Miller AZ; Laiz L; Gonzalez JM; Dionísio A; Macedo MF; Saiz-Jimenez C
    Sci Total Environ; 2008 Nov; 405(1-3):278-85. PubMed ID: 18768211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Algal and cyanobacterial biofilms on calcareous historic buildings.
    Crispim CA; Gaylarde PM; Gaylarde CC
    Curr Microbiol; 2003 Feb; 46(2):79-82. PubMed ID: 12520359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiology and behavior of Pseudomonas fluorescens single and dual strain biofilms under diverse hydrodynamics stresses.
    Simões M; Simões LC; Vieira MJ
    Int J Food Microbiol; 2008 Dec; 128(2):309-16. PubMed ID: 18951643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study of biofilm formation by Shiga toxigenic Escherichia coli using epifluorescence microscopy on stainless steel and a microtitre plate method.
    Rivas L; Dykes GA; Fegan N
    J Microbiol Methods; 2007 Apr; 69(1):44-51. PubMed ID: 17239460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of water and biomass in small colony variant PAO1 biofilms by confocal Raman microspectroscopy.
    Sandt C; Smith-Palmer T; Comeau J; Pink D
    Appl Microbiol Biotechnol; 2009 Jul; 83(6):1171-82. PubMed ID: 19529929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biofilm formation by Enterococcus faecalis on intraocular lens material.
    Kobayakawa S; Jett BD; Gilmore MS
    Curr Eye Res; 2005 Sep; 30(9):741-5. PubMed ID: 16146919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface colour: An overlooked aspect in the study of cyanobacterial biofilm formation.
    Gambino M; Sanmartín P; Longoni M; Villa F; Mitchell R; Cappitelli F
    Sci Total Environ; 2019 Apr; 659():342-353. PubMed ID: 30599353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A general description of detachment for multidimensional modelling of biofilms.
    Xavier Jde B; Picioreanu C; van Loosdrecht MC
    Biotechnol Bioeng; 2005 Sep; 91(6):651-69. PubMed ID: 15918167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of extracellular polymers on Staphylococcus epidermidis biofilm biomass and metabolic activity.
    Sousa C; Teixeira P; Oliveira R
    J Basic Microbiol; 2009 Aug; 49(4):363-70. PubMed ID: 19219902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of local water and biomass in wild type PA01 biofilms by Confocal Raman Microspectroscopy.
    Sandt C; Smith Palmer T; Pink J; Pink D
    J Microbiol Methods; 2008 Sep; 75(1):148-52. PubMed ID: 18571260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laboratory-induced endolithic growth in calcarenites: biodeteriorating potential assessment.
    Miller AZ; Rogerio-Candelera MA; Laiz L; Wierzchos J; Ascaso C; Sequeira Braga MA; Hernández-Mariné M; Maurício A; Dionísio A; Macedo MF; Saiz-Jimenez C
    Microb Ecol; 2010 Jul; 60(1):55-68. PubMed ID: 20440490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.