BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

525 related articles for article (PubMed ID: 15364599)

  • 1. Marginal nutritional status of zinc, iron, and calcium increases cadmium retention in the duodenum and other organs of rats fed rice-based diets.
    Reeves PG; Chaney RL
    Environ Res; 2004 Nov; 96(3):311-22. PubMed ID: 15364599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mineral status of female rats affects the absorption and organ distribution of dietary cadmium derived from edible sunflower kernels (Helianthus annuus L.).
    Reeves PG; Chaney RL
    Environ Res; 2001 Mar; 85(3):215-25. PubMed ID: 11237510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nutritional status affects the absorption and whole-body and organ retention of cadmium in rats fed rice-based diets.
    Reeves PG; Chaney RL
    Environ Sci Technol; 2002 Jun; 36(12):2684-92. PubMed ID: 12099465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cadmium absorption and retention by rats fed durum wheat (Triticum turgidum L. var. durum) grain.
    House WA; Hart JJ; Norvell WA; Welch RM
    Br J Nutr; 2003 Apr; 89(4):499-508. PubMed ID: 12654168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioavailability as an issue in risk assessment and management of food cadmium: a review.
    Reeves PG; Chaney RL
    Sci Total Environ; 2008 Jul; 398(1-3):13-9. PubMed ID: 18430461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metallothionein induction is not involved in cadmium accumulation in the duodenum of mice and rats fed diets containing high-cadmium rice or sunflower kernels and a marginal supply of zinc, iron, and calcium.
    Reeves PG; Chaney RL; Simmons RW; Cherian MG
    J Nutr; 2005 Jan; 135(1):99-108. PubMed ID: 15623840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cadmium accumulation, zinc status, and mineral bioavailability of growing rats fed diets high in zinc with increasing amounts of phytic acid.
    Rimbach G; Pallauf J
    Biol Trace Elem Res; 1997 Apr; 57(1):59-70. PubMed ID: 9258469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioavailability of calcium, iron and zinc fortified whole wheat flour chapatti.
    Ahmed A; Anjum FM; Ur Rehman S; Randhawa MA; Farooq U
    Plant Foods Hum Nutr; 2008 Mar; 63(1):7-13. PubMed ID: 18004661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue distribution of cadmium in rats given minimum amounts of cadmium-polluted rice or cadmium chloride for 8 months.
    Hiratsuka H; Satoh Si; Satoh M; Nishijima M; Katsuki Y; Suzuki J; Nakagawa Ji; Sumiyoshi M; Shibutani M; Mitsumori K; Tanaka-Kagawa T; Ando M
    Toxicol Appl Pharmacol; 1999 Oct; 160(2):183-91. PubMed ID: 10527917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Zn, Cu, Pb, and Cd on fitness in snails (Helix aspersa).
    Laskowski R; Hopkin SP
    Ecotoxicol Environ Saf; 1996 Jun; 34(1):59-69. PubMed ID: 8793321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of dietary iron concentration on gastrointestinal and branchial assimilation of both iron and cadmium in zebrafish (Danio rerio).
    Cooper CA; Handy RD; Bury NR
    Aquat Toxicol; 2006 Aug; 79(2):167-75. PubMed ID: 16844240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioaccumulation of cadmium in an experimental aquatic food chain involving phytoplankton (Chlorella vulgaris), zooplankton (Moina macrocopa), and the predatory catfish Clarias macrocephalus x C. gariepinus.
    Ruangsomboon S; Wongrat L
    Aquat Toxicol; 2006 Jun; 78(1):15-20. PubMed ID: 16504313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accumulation of cadmium from wheat bran, sugar-beet fibre, carrots and cadmium chloride in the liver and kidneys of mice.
    Lind Y; Engman J; Jorhem L; Glynn AW
    Br J Nutr; 1998 Aug; 80(2):205-11. PubMed ID: 9828763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dietary iron regulates intestinal cadmium absorption through iron transporters in rats.
    Ryu DY; Lee SJ; Park DW; Choi BS; Klaassen CD; Park JD
    Toxicol Lett; 2004 Aug; 152(1):19-25. PubMed ID: 15294343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium-enriched goats' milk aids recovery of iron status better than calcium-enriched cows' milk, in rats with nutritional ferropenic anaemia.
    Nestares T; Barrionuevo M; Díaz-Castro J; López-Aliaga I; Alférez MJ; Campos MS
    J Dairy Res; 2008 May; 75(2):153-9. PubMed ID: 18474131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue-specific cadmium and metallothionein levels in rainbow trout chronically acclimated to waterborne or dietary cadmium.
    Chowdhury MJ; Baldisserotto B; Wood CM
    Arch Environ Contam Toxicol; 2005 Apr; 48(3):381-90. PubMed ID: 15750771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of low oral lead and cadmium exposure and zinc status of heme metabolites in weanling rats.
    Panemangalore M; Bebe FN
    Int J Occup Med Environ Health; 1996; 9(2):141-51. PubMed ID: 8803328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental aluminum toxicity in mice can be modulated by low concentrations of minerals (Fe, Zn, P, Ca, Mg) in the diet.
    Golub MS; Germann SL; Keen CL
    Biol Trace Elem Res; 2003; 93(1-3):213-26. PubMed ID: 12835503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signs of iron deficiency in copper-deficient rats are not affected by iron supplements administered by diet or by injection.
    Reeves PG; DeMars LC
    J Nutr Biochem; 2006 Sep; 17(9):635-42. PubMed ID: 16781861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excess calcium increases bone zinc concentration without affecting zinc absorption in rats.
    Takasugi S; Matsui T; Omori H; Yano H
    Biol Trace Elem Res; 2007 Jun; 116(3):311-20. PubMed ID: 17709911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.