These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
528 related articles for article (PubMed ID: 15364599)
1. Marginal nutritional status of zinc, iron, and calcium increases cadmium retention in the duodenum and other organs of rats fed rice-based diets. Reeves PG; Chaney RL Environ Res; 2004 Nov; 96(3):311-22. PubMed ID: 15364599 [TBL] [Abstract][Full Text] [Related]
2. Mineral status of female rats affects the absorption and organ distribution of dietary cadmium derived from edible sunflower kernels (Helianthus annuus L.). Reeves PG; Chaney RL Environ Res; 2001 Mar; 85(3):215-25. PubMed ID: 11237510 [TBL] [Abstract][Full Text] [Related]
3. Nutritional status affects the absorption and whole-body and organ retention of cadmium in rats fed rice-based diets. Reeves PG; Chaney RL Environ Sci Technol; 2002 Jun; 36(12):2684-92. PubMed ID: 12099465 [TBL] [Abstract][Full Text] [Related]
4. Cadmium absorption and retention by rats fed durum wheat (Triticum turgidum L. var. durum) grain. House WA; Hart JJ; Norvell WA; Welch RM Br J Nutr; 2003 Apr; 89(4):499-508. PubMed ID: 12654168 [TBL] [Abstract][Full Text] [Related]
5. Bioavailability as an issue in risk assessment and management of food cadmium: a review. Reeves PG; Chaney RL Sci Total Environ; 2008 Jul; 398(1-3):13-9. PubMed ID: 18430461 [TBL] [Abstract][Full Text] [Related]
6. Metallothionein induction is not involved in cadmium accumulation in the duodenum of mice and rats fed diets containing high-cadmium rice or sunflower kernels and a marginal supply of zinc, iron, and calcium. Reeves PG; Chaney RL; Simmons RW; Cherian MG J Nutr; 2005 Jan; 135(1):99-108. PubMed ID: 15623840 [TBL] [Abstract][Full Text] [Related]
7. Cadmium accumulation, zinc status, and mineral bioavailability of growing rats fed diets high in zinc with increasing amounts of phytic acid. Rimbach G; Pallauf J Biol Trace Elem Res; 1997 Apr; 57(1):59-70. PubMed ID: 9258469 [TBL] [Abstract][Full Text] [Related]
8. Bioavailability of calcium, iron and zinc fortified whole wheat flour chapatti. Ahmed A; Anjum FM; Ur Rehman S; Randhawa MA; Farooq U Plant Foods Hum Nutr; 2008 Mar; 63(1):7-13. PubMed ID: 18004661 [TBL] [Abstract][Full Text] [Related]
9. Tissue distribution of cadmium in rats given minimum amounts of cadmium-polluted rice or cadmium chloride for 8 months. Hiratsuka H; Satoh Si; Satoh M; Nishijima M; Katsuki Y; Suzuki J; Nakagawa Ji; Sumiyoshi M; Shibutani M; Mitsumori K; Tanaka-Kagawa T; Ando M Toxicol Appl Pharmacol; 1999 Oct; 160(2):183-91. PubMed ID: 10527917 [TBL] [Abstract][Full Text] [Related]
10. Effect of Zn, Cu, Pb, and Cd on fitness in snails (Helix aspersa). Laskowski R; Hopkin SP Ecotoxicol Environ Saf; 1996 Jun; 34(1):59-69. PubMed ID: 8793321 [TBL] [Abstract][Full Text] [Related]
11. The effects of dietary iron concentration on gastrointestinal and branchial assimilation of both iron and cadmium in zebrafish (Danio rerio). Cooper CA; Handy RD; Bury NR Aquat Toxicol; 2006 Aug; 79(2):167-75. PubMed ID: 16844240 [TBL] [Abstract][Full Text] [Related]
12. Bioaccumulation of cadmium in an experimental aquatic food chain involving phytoplankton (Chlorella vulgaris), zooplankton (Moina macrocopa), and the predatory catfish Clarias macrocephalus x C. gariepinus. Ruangsomboon S; Wongrat L Aquat Toxicol; 2006 Jun; 78(1):15-20. PubMed ID: 16504313 [TBL] [Abstract][Full Text] [Related]
13. Accumulation of cadmium from wheat bran, sugar-beet fibre, carrots and cadmium chloride in the liver and kidneys of mice. Lind Y; Engman J; Jorhem L; Glynn AW Br J Nutr; 1998 Aug; 80(2):205-11. PubMed ID: 9828763 [TBL] [Abstract][Full Text] [Related]
14. Dietary iron regulates intestinal cadmium absorption through iron transporters in rats. Ryu DY; Lee SJ; Park DW; Choi BS; Klaassen CD; Park JD Toxicol Lett; 2004 Aug; 152(1):19-25. PubMed ID: 15294343 [TBL] [Abstract][Full Text] [Related]
15. Calcium-enriched goats' milk aids recovery of iron status better than calcium-enriched cows' milk, in rats with nutritional ferropenic anaemia. Nestares T; Barrionuevo M; Díaz-Castro J; López-Aliaga I; Alférez MJ; Campos MS J Dairy Res; 2008 May; 75(2):153-9. PubMed ID: 18474131 [TBL] [Abstract][Full Text] [Related]
16. Tissue-specific cadmium and metallothionein levels in rainbow trout chronically acclimated to waterborne or dietary cadmium. Chowdhury MJ; Baldisserotto B; Wood CM Arch Environ Contam Toxicol; 2005 Apr; 48(3):381-90. PubMed ID: 15750771 [TBL] [Abstract][Full Text] [Related]
17. Effects of low oral lead and cadmium exposure and zinc status of heme metabolites in weanling rats. Panemangalore M; Bebe FN Int J Occup Med Environ Health; 1996; 9(2):141-51. PubMed ID: 8803328 [TBL] [Abstract][Full Text] [Related]
18. Developmental aluminum toxicity in mice can be modulated by low concentrations of minerals (Fe, Zn, P, Ca, Mg) in the diet. Golub MS; Germann SL; Keen CL Biol Trace Elem Res; 2003; 93(1-3):213-26. PubMed ID: 12835503 [TBL] [Abstract][Full Text] [Related]
19. Signs of iron deficiency in copper-deficient rats are not affected by iron supplements administered by diet or by injection. Reeves PG; DeMars LC J Nutr Biochem; 2006 Sep; 17(9):635-42. PubMed ID: 16781861 [TBL] [Abstract][Full Text] [Related]
20. Excess calcium increases bone zinc concentration without affecting zinc absorption in rats. Takasugi S; Matsui T; Omori H; Yano H Biol Trace Elem Res; 2007 Jun; 116(3):311-20. PubMed ID: 17709911 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]