These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 15366038)
21. Ab initio/DFT/GIAO-CCSD(T) calculational study of the t-butyl cation: comparison of experimental data with structures, energetics, IR vibrational frequencies, and 13C NMR chemical shifts indicating preferred C(s) conformation. Rasul G; Chen JL; Prakash GK; Olah GA J Phys Chem A; 2009 Jun; 113(24):6795-9. PubMed ID: 19476321 [TBL] [Abstract][Full Text] [Related]
22. DFT-GIAO 1H and 13C NMR prediction of chemical shifts for the configurational assignment of 6beta-hydroxyhyoscyamine diastereoisomers. Muñoz MA; Joseph-Nathan P Magn Reson Chem; 2009 Jul; 47(7):578-84. PubMed ID: 19373852 [TBL] [Abstract][Full Text] [Related]
23. MNDO parameters for the prediction of 19F NMR chemical shifts in biologically relevant compounds. Williams DE; Peters MB; Wang B; Merz KM J Phys Chem A; 2008 Sep; 112(37):8829-38. PubMed ID: 18722416 [TBL] [Abstract][Full Text] [Related]
24. Solution structure of succinylacetone, an unsymmetrical beta-diketone, as studied by 13C NMR and GIAO-DFT calculations. Bal D; Kraska-Dziadecka A; Gryff-Keller A J Org Chem; 2009 Nov; 74(22):8604-9. PubMed ID: 19839628 [TBL] [Abstract][Full Text] [Related]
25. Conformational studies of poly(9,9-dialkylfluorene)s in solution using NMR spectroscopy and density functional theory calculations. Justino LL; Ramos ML; Abreu PE; Carvalho RA; Sobral AJ; Scherf U; Burrows HD J Phys Chem B; 2009 Sep; 113(35):11808-21. PubMed ID: 19663434 [TBL] [Abstract][Full Text] [Related]
26. Structure-NMR chemical shift relationships for novel functionalized derivatives of quinoxalines. Balandina A; Kalinin A; Mamedov V; Figadère B; Latypov S Magn Reson Chem; 2005 Oct; 43(10):816-28. PubMed ID: 16041772 [TBL] [Abstract][Full Text] [Related]
27. Determination of the relative stereochemistry of flexible organic compounds by Ab initio methods: conformational analysis and Boltzmann-averaged GIAO 13C NMR chemical shifts. Barone G; Duca D; Silvestri A; Gomez-Paloma L; Riccio R; Bifulco G Chemistry; 2002 Jul; 8(14):3240-5. PubMed ID: 12203354 [TBL] [Abstract][Full Text] [Related]
29. Molecular structure, IR and NMR spectra of 2,6 distyrylpyridine by density functional theory and ab initio Hartree-Fock calculations. Atalay Y; Başoğlu A; Avci D Spectrochim Acta A Mol Biomol Spectrosc; 2008 Feb; 69(2):460-6. PubMed ID: 17540615 [TBL] [Abstract][Full Text] [Related]
30. Experimental and quantum-chemical studies of 1H, 13C and 15N NMR coordination shifts in Pd(II) and Pt(II) chloride complexes with quinoline, isoquinoline, and 2,2'-biquinoline. Pazderski L; Tousek J; Sitkowski J; Kozerski L; Szłyk E Magn Reson Chem; 2007 Dec; 45(12):1059-71. PubMed ID: 18044805 [TBL] [Abstract][Full Text] [Related]
31. Understanding the NMR chemical shifts for 6-halopurines: role of structure, solvent and relativistic effects. Standara S; Malináková K; Marek R; Marek J; Hocek M; Vaara J; Straka M Phys Chem Chem Phys; 2010 May; 12(19):5126-39. PubMed ID: 20445915 [TBL] [Abstract][Full Text] [Related]
32. Modeling the (13)C chemical-shift tensor in organic single crystals by quantum mechanical methods: finite basis set effects. Sefzik TH; Fidler JM; Iuliucci RJ; Facelli JC Magn Reson Chem; 2006 Mar; 44(3):390-400. PubMed ID: 16477672 [TBL] [Abstract][Full Text] [Related]
33. 1H and 13C NMR chemical shift assignments of spiro-cycloalkylidenehomo- and methanofullerenes by the DFT-GIAO method. Khalilov LM; Tulyabaev AR; Yanybin VM; Tuktarov AR Magn Reson Chem; 2011 Jun; 49(6):378-84. PubMed ID: 21452349 [TBL] [Abstract][Full Text] [Related]
34. Calculation of 13C chemical shifts in rna nucleosides: structure-13C chemical shift relationships. Rossi P; Harbison GS J Magn Reson; 2001 Jul; 151(1):1-8. PubMed ID: 11444931 [TBL] [Abstract][Full Text] [Related]
35. A joined theoretical-experimental investigation on the 1H and 13C NMR signatures of defects in poly(vinyl chloride). d'Antuono P; Botek E; Champagne B; Wieme J; Reyniers MF; Marin GB; Adriaensens PJ; Gelan JM J Phys Chem B; 2008 Nov; 112(47):14804-18. PubMed ID: 18975894 [TBL] [Abstract][Full Text] [Related]
36. Theoretical investigation on multinuclear NMR chemical shifts of some tris(trifluoromethyl)boron complexes. Zhang J; Cai S; Chen Z Magn Reson Chem; 2009 Aug; 47(8):629-34. PubMed ID: 19384915 [TBL] [Abstract][Full Text] [Related]
37. Experimental and theoretical NMR study of selected oxocarboxylic acid oximes. Malek K; Vala M; Kozłowski H; Proniewicz LM Magn Reson Chem; 2004 Jan; 42(1):23-9. PubMed ID: 14745813 [TBL] [Abstract][Full Text] [Related]
38. Observed and calculated 1H and 13C chemical shifts induced by the in situ oxidation of model sulfides to sulfoxides and sulfones. Dracínský M; Pohl R; Slavetínská L; Budesínský M Magn Reson Chem; 2010 Sep; 48(9):718-26. PubMed ID: 20661941 [TBL] [Abstract][Full Text] [Related]
39. Theoretical and experimental NMR study of protopine hydrochloride isomers. Tousek J; Malináková K; Dostál J; Marek R Magn Reson Chem; 2005 Jul; 43(7):578-81. PubMed ID: 15883981 [TBL] [Abstract][Full Text] [Related]
40. An NMR, IR and theoretical investigation of (1)H chemical shifts and hydrogen bonding in phenols. Abraham RJ; Mobli M Magn Reson Chem; 2007 Oct; 45(10):865-77. PubMed ID: 17729232 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]