These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 15366038)
41. A simple method for the preparation of pseudopure states in nuclear magnetic resonance quantum information processing. Fung BM; Ermakov VL J Chem Phys; 2004 Nov; 121(17):8410-4. PubMed ID: 15511162 [TBL] [Abstract][Full Text] [Related]
42. On the Efficiency of the Density Functional Theory (DFT)-Based Computational Protocol for Rusakov YY; Semenov VA; Rusakova IL Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37834068 [TBL] [Abstract][Full Text] [Related]
43. Calculating accurate proton chemical shifts of organic molecules with density functional methods and modest basis sets. Jain R; Bally T; Rablen PR J Org Chem; 2009 Jun; 74(11):4017-23. PubMed ID: 19435298 [TBL] [Abstract][Full Text] [Related]
44. Oxoperoxo vanadium(V) complexes of L-lactic acid: density functional theory study of structure and NMR chemical shifts. Justino LL; Ramos ML; Nogueira F; Sobral AJ; Geraldes CF; Kaupp M; Burrows HD; Fiolhais C; Gil VM Inorg Chem; 2008 Aug; 47(16):7317-26. PubMed ID: 18627141 [TBL] [Abstract][Full Text] [Related]
45. NMR approach to the quantification of nonstatistical 13C distribution in natural products: vanillin. Tenailleau E; Lancelin P; Robins RJ; Akoka S Anal Chem; 2004 Jul; 76(13):3818-25. PubMed ID: 15228360 [TBL] [Abstract][Full Text] [Related]
46. FT-IR and NMR investigation of 2-(1-cyclohexenyl)ethylamine: a combined experimental and theoretical study. Izgi T; Alver O; Parlak C; Aytekin MT; Senyel M Spectrochim Acta A Mol Biomol Spectrosc; 2007 Sep; 68(1):55-62. PubMed ID: 17188562 [TBL] [Abstract][Full Text] [Related]
47. Comparison of different theory models and basis sets in the calculations of structures and 13C NMR spectra of [Pt(en)(CBDCA-O, O')], an analogue of the antitumor drug carboplatin. Gao H; Wei X; Liu X; Yan T J Phys Chem B; 2010 Mar; 114(11):4056-62. PubMed ID: 20199040 [TBL] [Abstract][Full Text] [Related]
48. Assigning the stereochemistry of pairs of diastereoisomers using GIAO NMR shift calculation. Smith SG; Goodman JM J Org Chem; 2009 Jun; 74(12):4597-607. PubMed ID: 19459674 [TBL] [Abstract][Full Text] [Related]
49. Theoretical predictions of 31p NMR chemical shift threshold of trimethylphosphine oxide absorbed on solid acid catalysts. Zheng A; Zhang H; Lu X; Liu SB; Deng F J Phys Chem B; 2008 Apr; 112(15):4496-505. PubMed ID: 18358024 [TBL] [Abstract][Full Text] [Related]
50. Density functional study of the 13C NMR chemical shifts in small-to-medium-diameter infinite single-walled carbon nanotubes. Zurek E; Pickard CJ; Walczak B; Autschbach J J Phys Chem A; 2006 Nov; 110(43):11995-2004. PubMed ID: 17064188 [TBL] [Abstract][Full Text] [Related]
51. Comparison of GIAO and CSGT for calculating (13) C and (15) N nuclear magnetic resonance chemical shifts of substituent neutral 5-aminotetrazole and 5-nitrotetrazole compounds. Li Y; Gao H; Zhang J; Li S; Zhou W Magn Reson Chem; 2012 Jan; 50(1):16-21. PubMed ID: 22271300 [TBL] [Abstract][Full Text] [Related]
52. GIAO/DFT studies on 1,2,4-triazole-5-thiones and their propargyl derivatives. Phalgune UD; Vanka K; Rajamohanan PR Magn Reson Chem; 2013 Dec; 51(12):767-74. PubMed ID: 24114881 [TBL] [Abstract][Full Text] [Related]
53. Experimental and quantum-chemical studies of 1H, 13C and 15N NMR coordination shifts in Pd(II) and Pt(II) chloride complexes with methyl and phenyl derivatives of 2,2'-bipyridine and 1,10-phenanthroline. Pazderski L; Tousek J; Sitkowski J; Kozerski L; Szłyk E Magn Reson Chem; 2007 Dec; 45(12):1045-58. PubMed ID: 18044804 [TBL] [Abstract][Full Text] [Related]
54. A solid state 13C NMR, crystallographic, and quantum chemical investigation of chemical shifts and hydrogen bonding in histidine dipeptides. Cheng F; Sun H; Zhang Y; Mukkamala D; Oldfield E J Am Chem Soc; 2005 Sep; 127(36):12544-54. PubMed ID: 16144402 [TBL] [Abstract][Full Text] [Related]
55. Study on potassium iso-propylxanthate and its decomposition products: experimental 13C CP/MAS NMR combined with DFT calculations. Larsson AC; Öberg S J Phys Chem A; 2011 Mar; 115(8):1396-407. PubMed ID: 21309541 [TBL] [Abstract][Full Text] [Related]
56. Empirical and DFT GIAO quantum-mechanical methods of (13)C chemical shifts prediction: competitors or collaborators? Elyashberg M; Blinov K; Smurnyy Y; Churanova T; Williams A Magn Reson Chem; 2010 Mar; 48(3):219-29. PubMed ID: 20108257 [TBL] [Abstract][Full Text] [Related]
57. Quantum mechanical calculations of conformationally relevant 1H and 13C NMR chemical shifts of calixarene systems. Bifulco G; Gomez-Paloma L; Riccio R; Gaeta C; Troisi F; Neri P Org Lett; 2005 Dec; 7(26):5757-60. PubMed ID: 16354059 [TBL] [Abstract][Full Text] [Related]
58. Quelling the Geometry Factor Effect in Quantum Chemical Calculations of Rusakov YY; Semenov VA; Rusakova IL Int J Mol Sci; 2024 Oct; 25(19):. PubMed ID: 39408918 [TBL] [Abstract][Full Text] [Related]
59. Influence of N-H...O and C-H...O hydrogen bonds on the 17O NMR tensors in crystalline uracil: computational study. Ida R; De Clerk M; Wu G J Phys Chem A; 2006 Jan; 110(3):1065-71. PubMed ID: 16420009 [TBL] [Abstract][Full Text] [Related]
60. The application of empirical methods of (13)C NMR chemical shift prediction as a filter for determining possible relative stereochemistry. Elyashberg ME; Blinov KA; Williams AJ Magn Reson Chem; 2009 Apr; 47(4):333-41. PubMed ID: 19206140 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]