BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 15366044)

  • 1. Relativistic DFT calculation of 99Ru NMR parameters: chemical shifts and spin-spin coupling constants.
    Bagno A; Bonchio M
    Magn Reson Chem; 2004 Oct; 42 Spec no():S79-87. PubMed ID: 15366044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of nonrelativistic and quasi-relativistic hybrid DFT for the prediction of electric and magnetic hyperfine parameters in 57Fe Mössbauer spectra.
    Sinnecker S; Slep LD; Bill E; Neese F
    Inorg Chem; 2005 Apr; 44(7):2245-54. PubMed ID: 15792459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational modeling of polyoxotungstates by relativistic DFT calculations of (183)W NMR chemical shifts.
    Bagno A; Bonchio M; Autschbach J
    Chemistry; 2006 Nov; 12(33):8460-71. PubMed ID: 16927351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spin-spin coupling constants transmitted through Ir-H...H-N dihydrogen bonds.
    Olejniczak M; Pecul M
    Chemphyschem; 2009 Jun; 10(8):1247-59. PubMed ID: 19418508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relativistic DFT Calculation of (119)Sn Chemical Shifts and Coupling Constants in Tin Compounds.
    Bagno A; Casella G; Saielli G
    J Chem Theory Comput; 2006 Jan; 2(1):37-46. PubMed ID: 26626377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: a comparison of three relativistic computational methods.
    Arcisauskaite V; Melo JI; Hemmingsen L; Sauer SP
    J Chem Phys; 2011 Jul; 135(4):044306. PubMed ID: 21806118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical predictions of nuclear magnetic resonance parameters in a novel organo-xenon species: chemical shifts and nuclear quadrupole couplings in HXeCCH.
    Straka M; Lantto P; Räsänen M; Vaara J
    J Chem Phys; 2007 Dec; 127(23):234314. PubMed ID: 18154389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DFT study of the NMR properties of xenon in covalent compounds and van der waals complexes-implications for the use of 129Xe as a molecular probe.
    Bagno A; Saielli G
    Chemistry; 2003 Apr; 9(7):1486-95. PubMed ID: 12658645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvent effects on 195Pt and 205Tl NMR chemical shifts of the complexes [(NC)5Pt--Tl(CN)n]n- (n=0-3), and [(NC)5Pt--Tl--Pt(CN)5]3- studied by relativistic density functional theory.
    Autschbach J; Le Guennic B
    Chemistry; 2004 May; 10(10):2581-9. PubMed ID: 15146529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Density functional computations of 99Ru chemical shifts: relativistic effects, influence of the density functional, and study of solvent effects on fac-[Ru(CO)3I3]-.
    Autschbach J; Zheng S
    Magn Reson Chem; 2006 Nov; 44(11):989-1007. PubMed ID: 16972308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An NMR and relativistic DFT investigation of one-bond nuclear spin-spin coupling in solid triphenyl group-14 chlorides.
    Willans MJ; Demko BA; Wasylishen RE
    Phys Chem Chem Phys; 2006 Jun; 8(23):2733-43. PubMed ID: 16763706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. (129)Xe chemical shift by the perturbational relativistic method: xenon fluorides.
    Lantto P; Vaara J
    J Chem Phys; 2007 Aug; 127(8):084312. PubMed ID: 17764253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relativistic heavy-atom effects on heavy-atom nuclear shieldings.
    Lantto P; Romero RH; Gómez SS; Aucar GA; Vaara J
    J Chem Phys; 2006 Nov; 125(18):184113. PubMed ID: 17115744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implementation of a hybrid DFT method for calculating NMR shieldings using Slater-type orbitals with spin-orbital coupling included. Applications to 187Os, 195Pt, and 13C in heavy-metal complexes.
    Krykunov M; Ziegler T; van Lenthe E
    J Phys Chem A; 2009 Oct; 113(43):11495-500. PubMed ID: 19731903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of two-component and four-component approaches for calculations of spin-spin coupling constants and NMR shielding constants of transition metal cyanides.
    Wodyński A; Repiský M; Pecul M
    J Chem Phys; 2012 Jul; 137(1):014311. PubMed ID: 22779652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A relativistic DFT study of one-bond fluorine-X indirect spin-spin coupling tensors.
    Feindel KW; Wasylishen RE
    Magn Reson Chem; 2004 Oct; 42 Spec no():S158-67. PubMed ID: 15366050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculation of chemical-shift tensors of heavy nuclei: a DFT/ZORA investigation of ¹⁹⁹Hg chemical-shift tensors in solids, and the effects of cluster size and electronic-state approximations.
    Alkan F; Dybowski C
    Phys Chem Chem Phys; 2014 Jul; 16(27):14298-308. PubMed ID: 24916317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DFT calculations of 29Si-NMR chemical shifts in Ru(II) silyl complexes: searching for trends and accurate values.
    Poblador-Bahamonde AI; Poteau R; Raynaud C; Eisenstein O
    Dalton Trans; 2011 Nov; 40(42):11321-6. PubMed ID: 21975698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DFT calculations of 1H and 13C NMR chemical shifts in transition metal hydrides.
    del Rosal I; Maron L; Poteau R; Jolibois F
    Dalton Trans; 2008 Aug; (30):3959-70. PubMed ID: 18648699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An investigation of lanthanum coordination compounds by using solid-state 139La NMR spectroscopy and relativistic density functional theory.
    Willans MJ; Feindel KW; Ooms KJ; Wasylishen RE
    Chemistry; 2005 Dec; 12(1):159-68. PubMed ID: 16224769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.