These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 15366420)

  • 21. A cluster of negative charges at the amino terminal tail of CFTR regulates ATP-dependent channel gating.
    Fu J; Ji HL; Naren AP; Kirk KL
    J Physiol; 2001 Oct; 536(Pt 2):459-70. PubMed ID: 11600681
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain.
    Csanády L; Chan KW; Nairn AC; Gadsby DC
    J Gen Physiol; 2005 Jan; 125(1):43-55. PubMed ID: 15596536
    [TBL] [Abstract][Full Text] [Related]  

  • 23. FLAG epitope positioned in an external loop preserves normal biophysical properties of CFTR.
    Schultz BD; Takahashi A; Liu C; Frizzell RA; Howard M
    Am J Physiol; 1997 Dec; 273(6):C2080-9. PubMed ID: 9435515
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interactions between impermeant blocking ions in the cystic fibrosis transmembrane conductance regulator chloride channel pore: evidence for anion-induced conformational changes.
    Ge N; Linsdell P
    J Membr Biol; 2006 Mar; 210(1):31-42. PubMed ID: 16794779
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Clusters of Cl- channels in CFTR-expressing Sf9 cells switch spontaneously between slow and fast gating modes.
    Larsen EH; Price EM; Gabriel SE; Stutts MJ; Boucher RC
    Pflugers Arch; 1996 Jul; 432(3):528-37. PubMed ID: 8766014
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multi-Ion mechanism for ion permeation and block in the cystic fibrosis transmembrane conductance regulator chloride channel.
    Linsdell P; Tabcharani JA; Hanrahan JW
    J Gen Physiol; 1997 Oct; 110(4):365-77. PubMed ID: 9379169
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cystic fibrosis transmembrane conductance regulator mediates sulphonylurea block of the inwardly rectifying K+ channel Kir6.1.
    Ishida-Takahashi A; Otani H; Takahashi C; Washizuka T; Tsuji K; Noda M; Horie M; Sasayama S
    J Physiol; 1998 Apr; 508 ( Pt 1)(Pt 1):23-30. PubMed ID: 9490811
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Substrates of multidrug resistance-associated proteins block the cystic fibrosis transmembrane conductance regulator chloride channel.
    Linsdell P; Hanrahan JW
    Br J Pharmacol; 1999 Mar; 126(6):1471-7. PubMed ID: 10217542
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two-dimensional kinetic analysis suggests nonsequential gating of mechanosensitive channels in Xenopus oocytes.
    Gil Z; Magleby KL; Silberberg SD
    Biophys J; 2001 Oct; 81(4):2082-99. PubMed ID: 11566780
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coupling between charge movement and pore opening in voltage dependent potassium channels.
    Stefani E
    Medicina (B Aires); 1995; 55(5 Pt 2):591-9. PubMed ID: 8842189
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tolbutamide causes open channel blockade of cystic fibrosis transmembrane conductance regulator Cl- channels.
    Venglarik CJ; Schultz BD; DeRoos AD; Singh AK; Bridges RJ
    Biophys J; 1996 Jun; 70(6):2696-703. PubMed ID: 8744307
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Patch clamp on the luminal membrane of exocrine gland acini from frog skin (Rana esculenta) reveals the presence of cystic fibrosis transmembrane conductance regulator-like Cl- channels activated by cyclic AMP.
    Sørensen JB; Larsen EH
    J Gen Physiol; 1998 Jul; 112(1):19-31. PubMed ID: 9649581
    [TBL] [Abstract][Full Text] [Related]  

  • 33. External barium affects the gating of KCNQ1 potassium channels and produces a pore block via two discrete sites.
    Gibor G; Yakubovich D; Peretz A; Attali B
    J Gen Physiol; 2004 Jul; 124(1):83-102. PubMed ID: 15226366
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibitory effects of glibenclamide on cystic fibrosis transmembrane regulator, swelling-activated, and Ca(2+)-activated Cl- channels in mammalian cardiac myocytes.
    Yamazaki J; Hume JR
    Circ Res; 1997 Jul; 81(1):101-9. PubMed ID: 9201033
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potent inhibition of the CFTR chloride channel by suramin.
    Bachmann A; Russ U; Quast U
    Naunyn Schmiedebergs Arch Pharmacol; 1999 Oct; 360(4):473-6. PubMed ID: 10551285
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of single K(ATP) channels in mammalian dentate gyrus granule cells.
    Pelletier MR; Pahapill PA; Pennefather PS; Carlen PL
    J Neurophysiol; 2000 Nov; 84(5):2291-301. PubMed ID: 11067973
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct comparison of NPPB and DPC as probes of CFTR expressed in Xenopus oocytes.
    Zhang ZR; Zeltwanger S; McCarty NA
    J Membr Biol; 2000 May; 175(1):35-52. PubMed ID: 10811966
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preferential phosphorylation of R-domain Serine 768 dampens activation of CFTR channels by PKA.
    Csanády L; Seto-Young D; Chan KW; Cenciarelli C; Angel BB; Qin J; McLachlin DT; Krutchinsky AN; Chait BT; Nairn AC; Gadsby DC
    J Gen Physiol; 2005 Feb; 125(2):171-86. PubMed ID: 15657296
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two salt bridges differentially contribute to the maintenance of cystic fibrosis transmembrane conductance regulator (CFTR) channel function.
    Cui G; Freeman CS; Knotts T; Prince CZ; Kuang C; McCarty NA
    J Biol Chem; 2013 Jul; 288(28):20758-67. PubMed ID: 23709221
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Voltage-dependent block of the cystic fibrosis transmembrane conductance regulator Cl- channel by two closely related arylaminobenzoates.
    McCarty NA; McDonough S; Cohen BN; Riordan JR; Davidson N; Lester HA
    J Gen Physiol; 1993 Jul; 102(1):1-23. PubMed ID: 8397274
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.