These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 15366552)

  • 1. Use of chitosan microspheres as remedial material for acidity and iron (III) contents of coal mining wastewaters.
    Fávere VT; Laus R; Laranjeira MC; Martins AO; Pedrosa RC
    Environ Technol; 2004 Aug; 25(8):861-6. PubMed ID: 15366552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remediation of coal mining wastewaters using chitosan microspheres.
    Geremias R; Pedrosa RC; Benassi JC; Fávere VT; Stolberg J; Menezes CT; Laranjeira MC
    Environ Technol; 2003 Dec; 24(12):1509-15. PubMed ID: 14977147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of remediation of coal mining wastewater by chitosan microspheres using biomarkers.
    Benassi JC; Laus R; Geremias R; Lima PL; Menezes CT; Laranjeira MC; Wilhelm-Filho D; Fávere VT; Pedrosa RC
    Arch Environ Contam Toxicol; 2006 Nov; 51(4):633-40. PubMed ID: 16988869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of chromium (III) by using coal as adsorbent.
    Anwar J; Shafique U; Salman M; Waheed-uz-Zaman ; Anwar S; Anzano JM
    J Hazard Mater; 2009 Nov; 171(1-3):797-801. PubMed ID: 19592161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of acidity and removal of metal ions from coal mining effluents using chitosan microspheres.
    Laus R; Geremias R; Vasconcelos HL; Laranjeira MC; Fávere VT
    J Hazard Mater; 2007 Oct; 149(2):471-4. PubMed ID: 17499431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation, characterization and adsorption properties of chitosan nanoparticles for eosin Y as a model anionic dye.
    Du WL; Xu ZR; Han XY; Xu YL; Miao ZG
    J Hazard Mater; 2008 May; 153(1-2):152-6. PubMed ID: 17890000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of reactive dye from wastewater by adsorption using ECH cross-linked chitosan beads as medium.
    Chiou MS; Kuo WS; Li HY
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2003; 38(11):2621-31. PubMed ID: 14533927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption behaviour of Fe(II) and Fe(III) ions in aqueous solution on chitosan and cross-linked chitosan beads.
    Ngah WS; Ab Ghani S; Kamari A
    Bioresour Technol; 2005 Mar; 96(4):443-50. PubMed ID: 15491825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-linked quaternary chitosan as an adsorbent for the removal of the reactive dye from aqueous solutions.
    Rosa S; Laranjeira MC; Riela HG; Fávere VT
    J Hazard Mater; 2008 Jun; 155(1-2):253-60. PubMed ID: 18180101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of adsorption capacity of young brown coals and humic acids prepared from different coal mines in Anatolia.
    Pehlivan E; Arslan G
    J Hazard Mater; 2006 Nov; 138(2):401-8. PubMed ID: 16962233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel adsorbent based on silkworm chrysalides for removal of heavy metals from wastewaters.
    Paulino AT; Minasse FA; Guilherme MR; Reis AV; Muniz EC; Nozaki J
    J Colloid Interface Sci; 2006 Sep; 301(2):479-87. PubMed ID: 16780853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of allura red dye by cross-linked chitosan from shrimp waste.
    Sánchez-Duarte RG; Sánchez-Machado DI; López-Cervantes J; Correa-Murrieta MA
    Water Sci Technol; 2012; 65(4):618-23. PubMed ID: 22277220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coal-based bottom ash (CBBA) waste material as adsorbent for removal of textile dyestuffs from aqueous solution.
    Dinçer AR; Güneş Y; Karakaya N
    J Hazard Mater; 2007 Mar; 141(3):529-35. PubMed ID: 16978765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of Cu(II) from aqueous solutions using chemically modified chitosan.
    Kannamba B; Reddy KL; AppaRao BV
    J Hazard Mater; 2010 Mar; 175(1-3):939-48. PubMed ID: 19942344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan.
    Babel S; Kurniawan TA
    Chemosphere; 2004 Feb; 54(7):951-67. PubMed ID: 14637353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of polyaluminium ferric chloride (PAFC) as a composite coagulant for water and wastewater treatment.
    Gao B; Yue Q; Miao J
    Water Sci Technol; 2003; 47(1):127-32. PubMed ID: 12578184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly enhanced adsorption for decontamination of lead ions from battery wastewaters using chitosan functionalized with xanthate.
    Chauhan D; Sankararamakrishnan N
    Bioresour Technol; 2008 Dec; 99(18):9021-4. PubMed ID: 18490156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic grafting of carboxyl groups on to chitosan--to confer on chitosan the property of a cationic dye adsorbent.
    Chao AC; Shyu SS; Lin YC; Mi FL
    Bioresour Technol; 2004 Jan; 91(2):157-62. PubMed ID: 14592745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of lead adsorption from aqueous solutions using an adsorbent synthesized from natural condensed tannin.
    Zhan XM; Zhao X
    Water Res; 2003 Sep; 37(16):3905-12. PubMed ID: 12909109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes.
    Chatterjee S; Lee MW; Woo SH
    Bioresour Technol; 2010 Mar; 101(6):1800-6. PubMed ID: 19962883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.